Neha-CanWill
commited on
End of training
Browse files- README.md +80 -0
- logs/events.out.tfevents.1709894034.0c59864ff64b.3471.0 +2 -2
- model.safetensors +1 -1
- preprocessor_config.json +13 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +80 -0
- vocab.txt +0 -0
README.md
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
base_model: microsoft/layoutlm-base-uncased
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- funsd
|
8 |
+
model-index:
|
9 |
+
- name: layoutlm-funsd
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# layoutlm-funsd
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 1.0686
|
21 |
+
- Answer: {'precision': 0.36396724294813465, 'recall': 0.49443757725587145, 'f1': 0.41928721174004197, 'number': 809}
|
22 |
+
- Header: {'precision': 0.27835051546391754, 'recall': 0.226890756302521, 'f1': 0.25, 'number': 119}
|
23 |
+
- Question: {'precision': 0.5165991902834008, 'recall': 0.5990610328638498, 'f1': 0.5547826086956522, 'number': 1065}
|
24 |
+
- Overall Precision: 0.4381
|
25 |
+
- Overall Recall: 0.5344
|
26 |
+
- Overall F1: 0.4815
|
27 |
+
- Overall Accuracy: 0.6250
|
28 |
+
|
29 |
+
## Model description
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Intended uses & limitations
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training and evaluation data
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Training procedure
|
42 |
+
|
43 |
+
### Training hyperparameters
|
44 |
+
|
45 |
+
The following hyperparameters were used during training:
|
46 |
+
- learning_rate: 3e-05
|
47 |
+
- train_batch_size: 16
|
48 |
+
- eval_batch_size: 8
|
49 |
+
- seed: 42
|
50 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
+
- lr_scheduler_type: linear
|
52 |
+
- num_epochs: 15
|
53 |
+
|
54 |
+
### Training results
|
55 |
+
|
56 |
+
| Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|
57 |
+
|:-------------:|:-----:|:----:|:---------------:|:-----------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
|
58 |
+
| 1.6981 | 1.0 | 10 | 1.5076 | {'precision': 0.03027027027027027, 'recall': 0.034610630407911, 'f1': 0.032295271049596314, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.2620056497175141, 'recall': 0.3483568075117371, 'f1': 0.29907295445384924, 'number': 1065} | 0.1704 | 0.2002 | 0.1841 | 0.3875 |
|
59 |
+
| 1.414 | 2.0 | 20 | 1.3021 | {'precision': 0.21108179419525067, 'recall': 0.39555006180469715, 'f1': 0.2752688172043011, 'number': 809} | {'precision': 0.23076923076923078, 'recall': 0.12605042016806722, 'f1': 0.16304347826086957, 'number': 119} | {'precision': 0.29304029304029305, 'recall': 0.4507042253521127, 'f1': 0.35516093229744733, 'number': 1065} | 0.2532 | 0.4089 | 0.3127 | 0.4499 |
|
60 |
+
| 1.2456 | 3.0 | 30 | 1.1694 | {'precision': 0.23877245508982037, 'recall': 0.3943139678615575, 'f1': 0.29743589743589743, 'number': 809} | {'precision': 0.3333333333333333, 'recall': 0.17647058823529413, 'f1': 0.23076923076923078, 'number': 119} | {'precision': 0.35604395604395606, 'recall': 0.6084507042253521, 'f1': 0.4492201039861352, 'number': 1065} | 0.3069 | 0.4957 | 0.3791 | 0.5226 |
|
61 |
+
| 1.1356 | 4.0 | 40 | 1.0684 | {'precision': 0.2732606873428332, 'recall': 0.40296662546353523, 'f1': 0.3256743256743257, 'number': 809} | {'precision': 0.3333333333333333, 'recall': 0.23529411764705882, 'f1': 0.27586206896551724, 'number': 119} | {'precision': 0.4185733512786003, 'recall': 0.584037558685446, 'f1': 0.48765190121520974, 'number': 1065} | 0.3532 | 0.4897 | 0.4104 | 0.5856 |
|
62 |
+
| 1.0269 | 5.0 | 50 | 1.0533 | {'precision': 0.29270462633451955, 'recall': 0.40667490729295425, 'f1': 0.3404035178479048, 'number': 809} | {'precision': 0.2857142857142857, 'recall': 0.2184873949579832, 'f1': 0.24761904761904763, 'number': 119} | {'precision': 0.4263959390862944, 'recall': 0.6309859154929578, 'f1': 0.5088981446421811, 'number': 1065} | 0.3680 | 0.5153 | 0.4293 | 0.5925 |
|
63 |
+
| 0.9574 | 6.0 | 60 | 1.0417 | {'precision': 0.31875, 'recall': 0.5043263288009888, 'f1': 0.3906175203446625, 'number': 809} | {'precision': 0.2839506172839506, 'recall': 0.19327731092436976, 'f1': 0.22999999999999998, 'number': 119} | {'precision': 0.5027173913043478, 'recall': 0.5211267605633803, 'f1': 0.5117565698478561, 'number': 1065} | 0.4 | 0.4947 | 0.4424 | 0.6055 |
|
64 |
+
| 0.8746 | 7.0 | 70 | 1.0403 | {'precision': 0.33510167992926615, 'recall': 0.4684796044499382, 'f1': 0.39072164948453614, 'number': 809} | {'precision': 0.3023255813953488, 'recall': 0.2184873949579832, 'f1': 0.25365853658536586, 'number': 119} | {'precision': 0.5072340425531915, 'recall': 0.5596244131455399, 'f1': 0.532142857142857, 'number': 1065} | 0.4185 | 0.5023 | 0.4566 | 0.6148 |
|
65 |
+
| 0.8197 | 8.0 | 80 | 1.0323 | {'precision': 0.3490304709141274, 'recall': 0.4672435105067985, 'f1': 0.3995771670190275, 'number': 809} | {'precision': 0.25742574257425743, 'recall': 0.2184873949579832, 'f1': 0.23636363636363636, 'number': 119} | {'precision': 0.49101796407185627, 'recall': 0.615962441314554, 'f1': 0.546438983756768, 'number': 1065} | 0.4206 | 0.5319 | 0.4698 | 0.6212 |
|
66 |
+
| 0.7517 | 9.0 | 90 | 1.0418 | {'precision': 0.3580705009276438, 'recall': 0.47713226205191595, 'f1': 0.4091149973502915, 'number': 809} | {'precision': 0.27472527472527475, 'recall': 0.21008403361344538, 'f1': 0.2380952380952381, 'number': 119} | {'precision': 0.5266323024054983, 'recall': 0.5755868544600939, 'f1': 0.5500224315836698, 'number': 1065} | 0.4389 | 0.5138 | 0.4734 | 0.6237 |
|
67 |
+
| 0.7561 | 10.0 | 100 | 1.0652 | {'precision': 0.3465587044534413, 'recall': 0.5290482076637825, 'f1': 0.4187866927592955, 'number': 809} | {'precision': 0.29545454545454547, 'recall': 0.2184873949579832, 'f1': 0.251207729468599, 'number': 119} | {'precision': 0.536697247706422, 'recall': 0.5492957746478874, 'f1': 0.5429234338747101, 'number': 1065} | 0.4306 | 0.5213 | 0.4716 | 0.6226 |
|
68 |
+
| 0.6786 | 11.0 | 110 | 1.0498 | {'precision': 0.3706896551724138, 'recall': 0.4783683559950556, 'f1': 0.4177010253642741, 'number': 809} | {'precision': 0.3068181818181818, 'recall': 0.226890756302521, 'f1': 0.2608695652173913, 'number': 119} | {'precision': 0.5236593059936908, 'recall': 0.6234741784037559, 'f1': 0.5692241748821258, 'number': 1065} | 0.4492 | 0.5409 | 0.4908 | 0.6369 |
|
69 |
+
| 0.6839 | 12.0 | 120 | 1.1004 | {'precision': 0.35621198957428324, 'recall': 0.5067985166872683, 'f1': 0.41836734693877553, 'number': 809} | {'precision': 0.30851063829787234, 'recall': 0.24369747899159663, 'f1': 0.27230046948356806, 'number': 119} | {'precision': 0.5135350318471338, 'recall': 0.6056338028169014, 'f1': 0.5557949159844894, 'number': 1065} | 0.4334 | 0.5439 | 0.4824 | 0.6115 |
|
70 |
+
| 0.6505 | 13.0 | 130 | 1.0685 | {'precision': 0.3501303214596003, 'recall': 0.49814585908529047, 'f1': 0.41122448979591836, 'number': 809} | {'precision': 0.26804123711340205, 'recall': 0.2184873949579832, 'f1': 0.24074074074074076, 'number': 119} | {'precision': 0.5467756584922797, 'recall': 0.5652582159624413, 'f1': 0.5558633425669437, 'number': 1065} | 0.4389 | 0.5173 | 0.4749 | 0.6324 |
|
71 |
+
| 0.6221 | 14.0 | 140 | 1.0541 | {'precision': 0.3643192488262911, 'recall': 0.4796044499381953, 'f1': 0.4140875133404482, 'number': 809} | {'precision': 0.2857142857142857, 'recall': 0.23529411764705882, 'f1': 0.2580645161290323, 'number': 119} | {'precision': 0.5176747839748626, 'recall': 0.6187793427230047, 'f1': 0.5637296834901625, 'number': 1065} | 0.4413 | 0.5394 | 0.4854 | 0.6316 |
|
72 |
+
| 0.6015 | 15.0 | 150 | 1.0686 | {'precision': 0.36396724294813465, 'recall': 0.49443757725587145, 'f1': 0.41928721174004197, 'number': 809} | {'precision': 0.27835051546391754, 'recall': 0.226890756302521, 'f1': 0.25, 'number': 119} | {'precision': 0.5165991902834008, 'recall': 0.5990610328638498, 'f1': 0.5547826086956522, 'number': 1065} | 0.4381 | 0.5344 | 0.4815 | 0.6250 |
|
73 |
+
|
74 |
+
|
75 |
+
### Framework versions
|
76 |
+
|
77 |
+
- Transformers 4.38.2
|
78 |
+
- Pytorch 2.1.0+cu121
|
79 |
+
- Datasets 2.18.0
|
80 |
+
- Tokenizers 0.15.2
|
logs/events.out.tfevents.1709894034.0c59864ff64b.3471.0
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:14236f68cc16e8115504145c784860248f71db9bd28e1041b92de61d800edce6
|
3 |
+
size 15739
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 450558212
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c25189f363d3bbc8b7d1d4b7f04f44024d19086d6d42b52aad0296d1d8ef4007
|
3 |
size 450558212
|
preprocessor_config.json
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"apply_ocr": true,
|
3 |
+
"do_resize": true,
|
4 |
+
"image_processor_type": "LayoutLMv2ImageProcessor",
|
5 |
+
"ocr_lang": null,
|
6 |
+
"processor_class": "LayoutLMv2Processor",
|
7 |
+
"resample": 2,
|
8 |
+
"size": {
|
9 |
+
"height": 224,
|
10 |
+
"width": 224
|
11 |
+
},
|
12 |
+
"tesseract_config": ""
|
13 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"additional_special_tokens": [],
|
45 |
+
"apply_ocr": false,
|
46 |
+
"clean_up_tokenization_spaces": true,
|
47 |
+
"cls_token": "[CLS]",
|
48 |
+
"cls_token_box": [
|
49 |
+
0,
|
50 |
+
0,
|
51 |
+
0,
|
52 |
+
0
|
53 |
+
],
|
54 |
+
"do_basic_tokenize": true,
|
55 |
+
"do_lower_case": true,
|
56 |
+
"mask_token": "[MASK]",
|
57 |
+
"model_max_length": 512,
|
58 |
+
"never_split": null,
|
59 |
+
"only_label_first_subword": true,
|
60 |
+
"pad_token": "[PAD]",
|
61 |
+
"pad_token_box": [
|
62 |
+
0,
|
63 |
+
0,
|
64 |
+
0,
|
65 |
+
0
|
66 |
+
],
|
67 |
+
"pad_token_label": -100,
|
68 |
+
"processor_class": "LayoutLMv2Processor",
|
69 |
+
"sep_token": "[SEP]",
|
70 |
+
"sep_token_box": [
|
71 |
+
1000,
|
72 |
+
1000,
|
73 |
+
1000,
|
74 |
+
1000
|
75 |
+
],
|
76 |
+
"strip_accents": null,
|
77 |
+
"tokenize_chinese_chars": true,
|
78 |
+
"tokenizer_class": "LayoutLMv2Tokenizer",
|
79 |
+
"unk_token": "[UNK]"
|
80 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|