Neha-CanWill commited on
Commit
35eb996
1 Parent(s): 26b4857

End of training

Browse files
README.md CHANGED
@@ -17,14 +17,14 @@ should probably proofread and complete it, then remove this comment. -->
17
 
18
  This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
19
  It achieves the following results on the evaluation set:
20
- - Loss: 1.0436
21
- - Answer: {'precision': 0.3978685612788632, 'recall': 0.553770086526576, 'f1': 0.4630490956072351, 'number': 809}
22
- - Header: {'precision': 0.32926829268292684, 'recall': 0.226890756302521, 'f1': 0.26865671641791045, 'number': 119}
23
- - Question: {'precision': 0.5241157556270096, 'recall': 0.612206572769953, 'f1': 0.5647466435686443, 'number': 1065}
24
- - Overall Precision: 0.4596
25
- - Overall Recall: 0.5655
26
- - Overall F1: 0.5071
27
- - Overall Accuracy: 0.6267
28
 
29
  ## Model description
30
 
@@ -53,28 +53,28 @@ The following hyperparameters were used during training:
53
 
54
  ### Training results
55
 
56
- | Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
57
- |:-------------:|:-----:|:----:|:---------------:|:-----------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
58
- | 1.7148 | 1.0 | 10 | 1.5016 | {'precision': 0.08819018404907976, 'recall': 0.14215080346106304, 'f1': 0.10884997633696165, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.2198581560283688, 'recall': 0.08732394366197183, 'f1': 0.125, 'number': 1065} | 0.1204 | 0.1044 | 0.1118 | 0.3613 |
59
- | 1.4202 | 2.0 | 20 | 1.3572 | {'precision': 0.21160042964554243, 'recall': 0.48702101359703337, 'f1': 0.29502059153874954, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.24895977808599168, 'recall': 0.3370892018779343, 'f1': 0.28639808536098926, 'number': 1065} | 0.2265 | 0.3778 | 0.2832 | 0.4216 |
60
- | 1.2863 | 3.0 | 30 | 1.2150 | {'precision': 0.25656167979002625, 'recall': 0.48331273176761436, 'f1': 0.33519074153450495, 'number': 809} | {'precision': 0.06779661016949153, 'recall': 0.03361344537815126, 'f1': 0.0449438202247191, 'number': 119} | {'precision': 0.3437908496732026, 'recall': 0.49389671361502346, 'f1': 0.4053949903660886, 'number': 1065} | 0.2959 | 0.4621 | 0.3608 | 0.4790 |
61
- | 1.1633 | 4.0 | 40 | 1.1144 | {'precision': 0.2625454545454545, 'recall': 0.446229913473424, 'f1': 0.3305860805860806, 'number': 809} | {'precision': 0.3253012048192771, 'recall': 0.226890756302521, 'f1': 0.26732673267326734, 'number': 119} | {'precision': 0.37986577181208053, 'recall': 0.5314553990610329, 'f1': 0.4430528375733855, 'number': 1065} | 0.3236 | 0.4787 | 0.3862 | 0.5442 |
62
- | 1.0585 | 5.0 | 50 | 1.0827 | {'precision': 0.3039940828402367, 'recall': 0.5080346106304079, 'f1': 0.38037945395650163, 'number': 809} | {'precision': 0.32432432432432434, 'recall': 0.20168067226890757, 'f1': 0.24870466321243526, 'number': 119} | {'precision': 0.4149933065595716, 'recall': 0.5821596244131455, 'f1': 0.48456428292301673, 'number': 1065} | 0.3613 | 0.5294 | 0.4295 | 0.5700 |
63
- | 0.9987 | 6.0 | 60 | 1.0373 | {'precision': 0.326783114992722, 'recall': 0.5550061804697157, 'f1': 0.4113605130554283, 'number': 809} | {'precision': 0.4074074074074074, 'recall': 0.18487394957983194, 'f1': 0.2543352601156069, 'number': 119} | {'precision': 0.453125, 'recall': 0.5173708920187794, 'f1': 0.4831214379658045, 'number': 1065} | 0.3865 | 0.5128 | 0.4408 | 0.6016 |
64
- | 0.9315 | 7.0 | 70 | 1.0055 | {'precision': 0.34718100890207715, 'recall': 0.4338689740420272, 'f1': 0.3857142857142857, 'number': 809} | {'precision': 0.3229166666666667, 'recall': 0.2605042016806723, 'f1': 0.28837209302325584, 'number': 119} | {'precision': 0.4558011049723757, 'recall': 0.6197183098591549, 'f1': 0.5252686032630322, 'number': 1065} | 0.4078 | 0.5228 | 0.4582 | 0.6164 |
65
- | 0.8716 | 8.0 | 80 | 1.0112 | {'precision': 0.33733013589128696, 'recall': 0.5216316440049443, 'f1': 0.40970873786407763, 'number': 809} | {'precision': 0.3717948717948718, 'recall': 0.24369747899159663, 'f1': 0.29441624365482233, 'number': 119} | {'precision': 0.44542372881355935, 'recall': 0.6169014084507042, 'f1': 0.5173228346456693, 'number': 1065} | 0.3951 | 0.5559 | 0.4620 | 0.6153 |
66
- | 0.8102 | 9.0 | 90 | 1.0152 | {'precision': 0.3773062730627306, 'recall': 0.5055624227441285, 'f1': 0.4321183306920232, 'number': 809} | {'precision': 0.3611111111111111, 'recall': 0.2184873949579832, 'f1': 0.27225130890052357, 'number': 119} | {'precision': 0.4880860876249039, 'recall': 0.596244131455399, 'f1': 0.536770921386306, 'number': 1065} | 0.4355 | 0.5369 | 0.4809 | 0.6226 |
67
- | 0.8003 | 10.0 | 100 | 1.0342 | {'precision': 0.3804878048780488, 'recall': 0.5784919653893696, 'f1': 0.45904855321235905, 'number': 809} | {'precision': 0.32, 'recall': 0.20168067226890757, 'f1': 0.24742268041237112, 'number': 119} | {'precision': 0.5183887915936952, 'recall': 0.5558685446009389, 'f1': 0.5364748527412777, 'number': 1065} | 0.4430 | 0.5439 | 0.4883 | 0.6143 |
68
- | 0.728 | 11.0 | 110 | 1.0330 | {'precision': 0.3871559633027523, 'recall': 0.5216316440049443, 'f1': 0.4444444444444445, 'number': 809} | {'precision': 0.29213483146067415, 'recall': 0.2184873949579832, 'f1': 0.25, 'number': 119} | {'precision': 0.4981791697013838, 'recall': 0.6422535211267606, 'f1': 0.561115668580804, 'number': 1065} | 0.4436 | 0.5680 | 0.4981 | 0.6221 |
69
- | 0.7175 | 12.0 | 120 | 1.0841 | {'precision': 0.38127090301003347, 'recall': 0.5636588380716935, 'f1': 0.45486284289276807, 'number': 809} | {'precision': 0.3684210526315789, 'recall': 0.23529411764705882, 'f1': 0.28717948717948716, 'number': 119} | {'precision': 0.5153225806451613, 'recall': 0.6, 'f1': 0.5544468546637744, 'number': 1065} | 0.4471 | 0.5635 | 0.4986 | 0.6243 |
70
- | 0.6893 | 13.0 | 130 | 1.0501 | {'precision': 0.3815126050420168, 'recall': 0.5611866501854141, 'f1': 0.4542271135567784, 'number': 809} | {'precision': 0.30952380952380953, 'recall': 0.2184873949579832, 'f1': 0.2561576354679803, 'number': 119} | {'precision': 0.5256950294860994, 'recall': 0.5859154929577465, 'f1': 0.5541740674955595, 'number': 1065} | 0.4486 | 0.5539 | 0.4957 | 0.6228 |
71
- | 0.653 | 14.0 | 140 | 1.0222 | {'precision': 0.39345794392523364, 'recall': 0.5203955500618047, 'f1': 0.4481106971793507, 'number': 809} | {'precision': 0.34615384615384615, 'recall': 0.226890756302521, 'f1': 0.27411167512690354, 'number': 119} | {'precision': 0.5045180722891566, 'recall': 0.6291079812206573, 'f1': 0.55996656916005, 'number': 1065} | 0.4515 | 0.5610 | 0.5003 | 0.6269 |
72
- | 0.6494 | 15.0 | 150 | 1.0436 | {'precision': 0.3978685612788632, 'recall': 0.553770086526576, 'f1': 0.4630490956072351, 'number': 809} | {'precision': 0.32926829268292684, 'recall': 0.226890756302521, 'f1': 0.26865671641791045, 'number': 119} | {'precision': 0.5241157556270096, 'recall': 0.612206572769953, 'f1': 0.5647466435686443, 'number': 1065} | 0.4596 | 0.5655 | 0.5071 | 0.6267 |
73
 
74
 
75
  ### Framework versions
76
 
77
  - Transformers 4.38.2
78
- - Pytorch 2.1.0+cu121
79
  - Datasets 2.18.0
80
  - Tokenizers 0.15.2
 
17
 
18
  This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
19
  It achieves the following results on the evaluation set:
20
+ - Loss: 1.1246
21
+ - Answer: {'precision': 0.3804878048780488, 'recall': 0.4820766378244747, 'f1': 0.425299890948746, 'number': 809}
22
+ - Header: {'precision': 0.34408602150537637, 'recall': 0.2689075630252101, 'f1': 0.3018867924528302, 'number': 119}
23
+ - Question: {'precision': 0.4845360824742268, 'recall': 0.6178403755868545, 'f1': 0.5431283532810565, 'number': 1065}
24
+ - Overall Precision: 0.4362
25
+ - Overall Recall: 0.5419
26
+ - Overall F1: 0.4833
27
+ - Overall Accuracy: 0.6171
28
 
29
  ## Model description
30
 
 
53
 
54
  ### Training results
55
 
56
+ | Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
57
+ |:-------------:|:-----:|:----:|:---------------:|:-----------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
58
+ | 1.7202 | 1.0 | 10 | 1.4980 | {'precision': 0.05310734463276836, 'recall': 0.0580964153275649, 'f1': 0.05548996458087367, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.26246719160104987, 'recall': 0.28169014084507044, 'f1': 0.27173913043478265, 'number': 1065} | 0.1711 | 0.1741 | 0.1726 | 0.3625 |
59
+ | 1.4151 | 2.0 | 20 | 1.3029 | {'precision': 0.19834183673469388, 'recall': 0.38442521631644005, 'f1': 0.26167437946992006, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.266388557806913, 'recall': 0.4197183098591549, 'f1': 0.32592052497265767, 'number': 1065} | 0.2325 | 0.3803 | 0.2886 | 0.4280 |
60
+ | 1.259 | 3.0 | 30 | 1.1884 | {'precision': 0.2627235213204952, 'recall': 0.4721878862793572, 'f1': 0.3376049491825011, 'number': 809} | {'precision': 0.06349206349206349, 'recall': 0.03361344537815126, 'f1': 0.04395604395604396, 'number': 119} | {'precision': 0.3270588235294118, 'recall': 0.5220657276995305, 'f1': 0.4021699819168174, 'number': 1065} | 0.2928 | 0.4727 | 0.3616 | 0.4939 |
61
+ | 1.1328 | 4.0 | 40 | 1.0951 | {'precision': 0.30996309963099633, 'recall': 0.519159456118665, 'f1': 0.3881700554528651, 'number': 809} | {'precision': 0.2857142857142857, 'recall': 0.18487394957983194, 'f1': 0.22448979591836735, 'number': 119} | {'precision': 0.4103139013452915, 'recall': 0.5154929577464789, 'f1': 0.4569288389513109, 'number': 1065} | 0.3578 | 0.4972 | 0.4161 | 0.5748 |
62
+ | 1.0223 | 5.0 | 50 | 1.0810 | {'precision': 0.28736581337737405, 'recall': 0.43016069221260816, 'f1': 0.3445544554455445, 'number': 809} | {'precision': 0.37142857142857144, 'recall': 0.2184873949579832, 'f1': 0.2751322751322751, 'number': 119} | {'precision': 0.38396624472573837, 'recall': 0.5981220657276995, 'f1': 0.4676945668135095, 'number': 1065} | 0.3439 | 0.5073 | 0.4099 | 0.5856 |
63
+ | 0.9408 | 6.0 | 60 | 1.0602 | {'precision': 0.3160667251975417, 'recall': 0.44499381953028433, 'f1': 0.3696098562628337, 'number': 809} | {'precision': 0.345679012345679, 'recall': 0.23529411764705882, 'f1': 0.27999999999999997, 'number': 119} | {'precision': 0.4154838709677419, 'recall': 0.6046948356807512, 'f1': 0.49254302103250486, 'number': 1065} | 0.3726 | 0.5178 | 0.4333 | 0.5983 |
64
+ | 0.8629 | 7.0 | 70 | 1.0853 | {'precision': 0.3160220994475138, 'recall': 0.3535228677379481, 'f1': 0.33372228704784135, 'number': 809} | {'precision': 0.375, 'recall': 0.2773109243697479, 'f1': 0.31884057971014496, 'number': 119} | {'precision': 0.42748091603053434, 'recall': 0.6309859154929578, 'f1': 0.50967007963595, 'number': 1065} | 0.3864 | 0.4972 | 0.4348 | 0.5961 |
65
+ | 0.8089 | 8.0 | 80 | 1.0864 | {'precision': 0.35083114610673666, 'recall': 0.4956736711990111, 'f1': 0.4108606557377049, 'number': 809} | {'precision': 0.36904761904761907, 'recall': 0.2605042016806723, 'f1': 0.30541871921182273, 'number': 119} | {'precision': 0.4398051496172582, 'recall': 0.5934272300469483, 'f1': 0.5051958433253397, 'number': 1065} | 0.3994 | 0.5339 | 0.4569 | 0.6110 |
66
+ | 0.7662 | 9.0 | 90 | 1.0967 | {'precision': 0.36006974716652135, 'recall': 0.5105067985166872, 'f1': 0.42229038854805717, 'number': 809} | {'precision': 0.4266666666666667, 'recall': 0.2689075630252101, 'f1': 0.32989690721649484, 'number': 119} | {'precision': 0.4724770642201835, 'recall': 0.5802816901408451, 'f1': 0.5208596713021492, 'number': 1065} | 0.4202 | 0.5334 | 0.4700 | 0.6115 |
67
+ | 0.7718 | 10.0 | 100 | 1.1450 | {'precision': 0.375, 'recall': 0.5414091470951793, 'f1': 0.44309559939301973, 'number': 809} | {'precision': 0.4050632911392405, 'recall': 0.2689075630252101, 'f1': 0.3232323232323232, 'number': 119} | {'precision': 0.5078125, 'recall': 0.5492957746478874, 'f1': 0.5277401894451962, 'number': 1065} | 0.4398 | 0.5294 | 0.4804 | 0.6057 |
68
+ | 0.6988 | 11.0 | 110 | 1.1180 | {'precision': 0.36609829488465395, 'recall': 0.4511742892459827, 'f1': 0.4042081949058693, 'number': 809} | {'precision': 0.3333333333333333, 'recall': 0.2689075630252101, 'f1': 0.29767441860465116, 'number': 119} | {'precision': 0.4661602209944751, 'recall': 0.6338028169014085, 'f1': 0.5372065260644648, 'number': 1065} | 0.4219 | 0.5379 | 0.4729 | 0.6089 |
69
+ | 0.6905 | 12.0 | 120 | 1.1064 | {'precision': 0.36837029893924783, 'recall': 0.4721878862793572, 'f1': 0.41386782231852653, 'number': 809} | {'precision': 0.3793103448275862, 'recall': 0.2773109243697479, 'f1': 0.32038834951456313, 'number': 119} | {'precision': 0.47112676056338026, 'recall': 0.6281690140845071, 'f1': 0.5384305835010061, 'number': 1065} | 0.4261 | 0.5439 | 0.4778 | 0.6149 |
70
+ | 0.666 | 13.0 | 130 | 1.1045 | {'precision': 0.36981132075471695, 'recall': 0.484548825710754, 'f1': 0.4194756554307116, 'number': 809} | {'precision': 0.3516483516483517, 'recall': 0.2689075630252101, 'f1': 0.3047619047619048, 'number': 119} | {'precision': 0.48205128205128206, 'recall': 0.6178403755868545, 'f1': 0.5415637860082304, 'number': 1065} | 0.4300 | 0.5429 | 0.4799 | 0.6174 |
71
+ | 0.6335 | 14.0 | 140 | 1.1195 | {'precision': 0.3810463968410661, 'recall': 0.47713226205191595, 'f1': 0.42371020856201974, 'number': 809} | {'precision': 0.34831460674157305, 'recall': 0.2605042016806723, 'f1': 0.2980769230769231, 'number': 119} | {'precision': 0.4817204301075269, 'recall': 0.6309859154929578, 'f1': 0.5463414634146342, 'number': 1065} | 0.4361 | 0.5464 | 0.4851 | 0.6187 |
72
+ | 0.6277 | 15.0 | 150 | 1.1246 | {'precision': 0.3804878048780488, 'recall': 0.4820766378244747, 'f1': 0.425299890948746, 'number': 809} | {'precision': 0.34408602150537637, 'recall': 0.2689075630252101, 'f1': 0.3018867924528302, 'number': 119} | {'precision': 0.4845360824742268, 'recall': 0.6178403755868545, 'f1': 0.5431283532810565, 'number': 1065} | 0.4362 | 0.5419 | 0.4833 | 0.6171 |
73
 
74
 
75
  ### Framework versions
76
 
77
  - Transformers 4.38.2
78
+ - Pytorch 2.2.1+cu121
79
  - Datasets 2.18.0
80
  - Tokenizers 0.15.2
logs/events.out.tfevents.1710154970.ip-172-31-23-111.10094.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:d846738c883ceb2925ba374a0a206407a50db7a981ac7c7e5d12b36e5edadb6f
3
- size 14670
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:20204db4d0915948a2ad4e07c53e09ecb12905bd9a010d8956584edfad9392eb
3
+ size 15739