File size: 15,571 Bytes
58a9af9
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space (Tuple)\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Uses the CombinedExtractor\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7e7859004ca0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e7859011380>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690448670158882834, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAdtHAPrc0gjxJEBI/dtHAPrc0gjxJEBI/dtHAPrc0gjxJEBI/dtHAPrc0gjxJEBI/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA7BuPv2G1tr/iwKg/aOKJPlx0r77gy228TR3LP/YI1L4F0b+/HMRhv34H2b+Tji0/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAB20cA+tzSCPEkQEj95IiA7VbYdOhgfCLx20cA+tzSCPEkQEj95IiA7VbYdOhgfCLx20cA+tzSCPEkQEj95IiA7VbYdOhgfCLx20cA+tzSCPEkQEj95IiA7VbYdOhgfCLyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.37659806 0.01589428 0.570561  ]\n [0.37659806 0.01589428 0.570561  ]\n [0.37659806 0.01589428 0.570561  ]\n [0.37659806 0.01589428 0.570561  ]]", "desired_goal": "[[-1.1180396  -1.4274102   1.3183863 ]\n [ 0.26930547 -0.34268463 -0.01451394]\n [ 1.5868317  -0.41413087 -1.4985663 ]\n [-0.88189864 -1.6955411   0.67795676]]", "observation": "[[ 0.37659806  0.01589428  0.570561    0.00244346  0.00060162 -0.00830819]\n [ 0.37659806  0.01589428  0.570561    0.00244346  0.00060162 -0.00830819]\n [ 0.37659806  0.01589428  0.570561    0.00244346  0.00060162 -0.00830819]\n [ 0.37659806  0.01589428  0.570561    0.00244346  0.00060162 -0.00830819]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA1yXfPVv9iD2CqNY9wdm2uoRFx7uEL2U9oPAqvWOfMr04U3s+e52SO7fATT0huWA+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]]", "desired_goal": "[[ 0.10895889  0.06688949  0.10481359]\n [-0.00139504 -0.00608128  0.05595352]\n [-0.04173338 -0.04360903  0.24543464]\n [ 0.00447434  0.05023262  0.21945621]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIb4CZ7+Cn47+UhpRSlIwBbJRLMowBdJRHQKWx0zQ/oq11fZQoaAZoCWgPQwgvMgG/RhLqv5SGlFKUaBVLMmgWR0ClsX3hn8KpdX2UKGgGaAloD0MIa9eEtMYg6L+UhpRSlGgVSzJoFkdApbEnnjhky3V9lChoBmgJaA9DCERrRZvjnPC/lIaUUpRoFUsyaBZHQKWwwvi97F91fZQoaAZoCWgPQwgCSkONQpLgv5SGlFKUaBVLMmgWR0ClsujM3ZPEdX2UKGgGaAloD0MIYHZPHhbq4r+UhpRSlGgVSzJoFkdApbKTYqXnhnV9lChoBmgJaA9DCGco7niT396/lIaUUpRoFUsyaBZHQKWyPRfnfVJ1fZQoaAZoCWgPQwhDU3b6QV3ov5SGlFKUaBVLMmgWR0Clsdg9FF2FdX2UKGgGaAloD0MICrlSz4JQ3b+UhpRSlGgVSzJoFkdApbPomb9ZR3V9lChoBmgJaA9DCPiL2ZJVEeq/lIaUUpRoFUsyaBZHQKWzkxIre691fZQoaAZoCWgPQwiN0TqqmqDxv5SGlFKUaBVLMmgWR0ClszzQVsUJdX2UKGgGaAloD0MIgbT/AdYq8r+UhpRSlGgVSzJoFkdApbLXqX4TK3V9lChoBmgJaA9DCFfRH5p5cuO/lIaUUpRoFUsyaBZHQKW06+WWyC51fZQoaAZoCWgPQwgVi98UVmrwv5SGlFKUaBVLMmgWR0CltJZ44ZMtdX2UKGgGaAloD0MIf2lRn+QO77+UhpRSlGgVSzJoFkdApbRAZdfLLnV9lChoBmgJaA9DCH8V4LvNG+q/lIaUUpRoFUsyaBZHQKWz28IRh+h1fZQoaAZoCWgPQwgV/aGZJ1fwv5SGlFKUaBVLMmgWR0Clte0dRzikdX2UKGgGaAloD0MI7zuGx34W4b+UhpRSlGgVSzJoFkdApbWXrGBFu3V9lChoBmgJaA9DCPskd9hE5ue/lIaUUpRoFUsyaBZHQKW1QTL4etF1fZQoaAZoCWgPQwhegH106sriv5SGlFKUaBVLMmgWR0CltNyI55qudX2UKGgGaAloD0MIbK8FvTcG8b+UhpRSlGgVSzJoFkdApbcHumaYu3V9lChoBmgJaA9DCMkgdxGmqOe/lIaUUpRoFUsyaBZHQKW2skbgjyF1fZQoaAZoCWgPQwhauReYFQrxv5SGlFKUaBVLMmgWR0CltlwV0tAcdX2UKGgGaAloD0MIaAWGrG516L+UhpRSlGgVSzJoFkdApbX3WlMyrXV9lChoBmgJaA9DCDVh+8kYH+a/lIaUUpRoFUsyaBZHQKW4Ovmozep1fZQoaAZoCWgPQwjjOPBquTPTv5SGlFKUaBVLMmgWR0Clt+V76YVqdX2UKGgGaAloD0MIJuXuc3w04L+UhpRSlGgVSzJoFkdApbePP1L8JnV9lChoBmgJaA9DCFNZFHZRdPG/lIaUUpRoFUsyaBZHQKW3KwnH/951fZQoaAZoCWgPQwh/Tdaoh2jev5SGlFKUaBVLMmgWR0CluUceS0SidX2UKGgGaAloD0MIzVzg8liz6L+UhpRSlGgVSzJoFkdApbjxhOP/73V9lChoBmgJaA9DCDSFzmvsku+/lIaUUpRoFUsyaBZHQKW4m11GLDR1fZQoaAZoCWgPQwhbQGg9fJnrv5SGlFKUaBVLMmgWR0CluDaWom5UdX2UKGgGaAloD0MIe9gLBWyH8L+UhpRSlGgVSzJoFkdApbqFGCqZMXV9lChoBmgJaA9DCL4XX7THi+u/lIaUUpRoFUsyaBZHQKW6MKpkwvh1fZQoaAZoCWgPQwgXf9sTJLbrv5SGlFKUaBVLMmgWR0CludqSX+l1dX2UKGgGaAloD0MIA5Xx7zMu8r+UhpRSlGgVSzJoFkdApbl2GwiaAnV9lChoBmgJaA9DCKXXZmMlpvG/lIaUUpRoFUsyaBZHQKW7sIHC4z91fZQoaAZoCWgPQwjYEByXcdPtv5SGlFKUaBVLMmgWR0Clu1stCiRGdX2UKGgGaAloD0MI9wKzQpHu7b+UhpRSlGgVSzJoFkdApbsFBrvb5HV9lChoBmgJaA9DCN0KYTWWMOa/lIaUUpRoFUsyaBZHQKW6oHY6GQF1fZQoaAZoCWgPQwg1sistI3Xlv5SGlFKUaBVLMmgWR0ClvOPdM0xedX2UKGgGaAloD0MI0nDK3Hwj7r+UhpRSlGgVSzJoFkdApbyOicoYvXV9lChoBmgJaA9DCDdtxmmIKu+/lIaUUpRoFUsyaBZHQKW8OGnn+yZ1fZQoaAZoCWgPQwjpD808uSbzv5SGlFKUaBVLMmgWR0Clu9RjBl+WdX2UKGgGaAloD0MIZHlXPWCe6r+UhpRSlGgVSzJoFkdApb37cEeQuHV9lChoBmgJaA9DCOxnsRTJV++/lIaUUpRoFUsyaBZHQKW9phTfixV1fZQoaAZoCWgPQwgvFLAdjNjmv5SGlFKUaBVLMmgWR0ClvU/vv0AcdX2UKGgGaAloD0MIo8haQ6n99r+UhpRSlGgVSzJoFkdApbzrYK6WgXV9lChoBmgJaA9DCETBjClYY+6/lIaUUpRoFUsyaBZHQKW/Gmce8wp1fZQoaAZoCWgPQwhcyvli78Xov5SGlFKUaBVLMmgWR0ClvsUP6KtQdX2UKGgGaAloD0MIMSO8PQgB5b+UhpRSlGgVSzJoFkdApb5u4wyqMnV9lChoBmgJaA9DCI1jJHuEGue/lIaUUpRoFUsyaBZHQKW+Cj9GZu11fZQoaAZoCWgPQwjl7QinBS/sv5SGlFKUaBVLMmgWR0ClwCn0TURWdX2UKGgGaAloD0MIPXyZKEJq57+UhpRSlGgVSzJoFkdApb/Uh/y5JHV9lChoBmgJaA9DCKWjHMwmQOa/lIaUUpRoFUsyaBZHQKW/fkS26TZ1fZQoaAZoCWgPQwhLlL2lnC/kv5SGlFKUaBVLMmgWR0ClvxofKZDzdX2UKGgGaAloD0MIVvXyO01m27+UhpRSlGgVSzJoFkdApcFdkMCtBHV9lChoBmgJaA9DCB9mL9tO2+K/lIaUUpRoFUsyaBZHQKXBCN4qwyJ1fZQoaAZoCWgPQwgGLLmKxe/gv5SGlFKUaBVLMmgWR0ClwLNZmqYJdX2UKGgGaAloD0MIrBqEud3L7r+UhpRSlGgVSzJoFkdApcBPepGWlnV9lChoBmgJaA9DCOoI4Gbx4uO/lIaUUpRoFUsyaBZHQKXDHu63AmB1fZQoaAZoCWgPQwgTQ3Iycavqv5SGlFKUaBVLMmgWR0Clwso7V8TjdX2UKGgGaAloD0MISz0LQnmf4L+UhpRSlGgVSzJoFkdApcJ01AJLNHV9lChoBmgJaA9DCOELk6mCUea/lIaUUpRoFUsyaBZHQKXCEPn0TUR1fZQoaAZoCWgPQwgqcoi4ORXyv5SGlFKUaBVLMmgWR0ClxNT4+KTCdX2UKGgGaAloD0MIDcLc7uU+3L+UhpRSlGgVSzJoFkdApcSAbKifx3V9lChoBmgJaA9DCFdCd0mcleS/lIaUUpRoFUsyaBZHQKXEKupS75F1fZQoaAZoCWgPQwjcEOM1r2riv5SGlFKUaBVLMmgWR0Clw8cD8tPIdX2UKGgGaAloD0MIZ/LNNjcm47+UhpRSlGgVSzJoFkdApcaS+8Gs3nV9lChoBmgJaA9DCOaw+47hsd6/lIaUUpRoFUsyaBZHQKXGPnq3VkN1fZQoaAZoCWgPQwhyGMxfIfPiv5SGlFKUaBVLMmgWR0ClxekDp1RtdX2UKGgGaAloD0MIdcjNcAO+57+UhpRSlGgVSzJoFkdApcWFIRRMvnV9lChoBmgJaA9DCM4Xey++6Ou/lIaUUpRoFUsyaBZHQKXIMpwS8J51fZQoaAZoCWgPQwiJRQw7jEnjv5SGlFKUaBVLMmgWR0Clx90kGA09dX2UKGgGaAloD0MIRj8aTpmb3r+UhpRSlGgVSzJoFkdApceG25QP7XV9lChoBmgJaA9DCC1eLAyR09+/lIaUUpRoFUsyaBZHQKXHIhtcfNl1fZQoaAZoCWgPQwh79lymJsHZv5SGlFKUaBVLMmgWR0ClyVDLSuyNdX2UKGgGaAloD0MIZTbIJCPn4b+UhpRSlGgVSzJoFkdApcj7oB7u2XV9lChoBmgJaA9DCDQUd7zJb+i/lIaUUpRoFUsyaBZHQKXIpaPCEYh1fZQoaAZoCWgPQwizeLEwRM7hv5SGlFKUaBVLMmgWR0ClyEEi+tbLdX2UKGgGaAloD0MIBKkUOxqH2b+UhpRSlGgVSzJoFkdApcpwWWQfZHV9lChoBmgJaA9DCMBfzJasitW/lIaUUpRoFUsyaBZHQKXKGt3fQ8h1fZQoaAZoCWgPQwhn0xHAzeLdv5SGlFKUaBVLMmgWR0ClycSrPt2LdX2UKGgGaAloD0MIn69ZLhud37+UhpRSlGgVSzJoFkdApclf8hs673V9lChoBmgJaA9DCM1y2eicn9K/lIaUUpRoFUsyaBZHQKXLjwgkkbB1fZQoaAZoCWgPQwhsfCb752nVv5SGlFKUaBVLMmgWR0Clyzmgam4zdX2UKGgGaAloD0MIA5mdRe9U7r+UhpRSlGgVSzJoFkdApcrjXjENv3V9lChoBmgJaA9DCIKLFTWYhu6/lIaUUpRoFUsyaBZHQKXKfqgyuZF1fZQoaAZoCWgPQwjs9lllprTsv5SGlFKUaBVLMmgWR0ClzKcqnWJ8dX2UKGgGaAloD0MIj6Z6Mv/o7b+UhpRSlGgVSzJoFkdApcxR3JPqLXV9lChoBmgJaA9DCHmUSnhCr9u/lIaUUpRoFUsyaBZHQKXL+7MgU111fZQoaAZoCWgPQwjpgY/BitPkv5SGlFKUaBVLMmgWR0Cly5cO9WZJdX2UKGgGaAloD0MI56ij42pk4L+UhpRSlGgVSzJoFkdApc3ETSLIgnV9lChoBmgJaA9DCGCPiZRmc+G/lIaUUpRoFUsyaBZHQKXNbtALRa51fZQoaAZoCWgPQwhXJCao4Vvmv5SGlFKUaBVLMmgWR0ClzRh/I8yOdX2UKGgGaAloD0MIRgn6Cz3i8L+UhpRSlGgVSzJoFkdApcyz2i+L33V9lChoBmgJaA9DCCl2NA71e/K/lIaUUpRoFUsyaBZHQKXO23solUp1fZQoaAZoCWgPQwjXS1MEOL3ov5SGlFKUaBVLMmgWR0ClzoY0Mw10dX2UKGgGaAloD0MIJm2q7pHN77+UhpRSlGgVSzJoFkdApc4wCEHt4XV9lChoBmgJaA9DCKoNTkS/NuK/lIaUUpRoFUsyaBZHQKXNy0hNdqt1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True  True  True]", "bounded_above": "[ True  True  True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}