File size: 12,632 Bytes
39367a0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 |
import os
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
import copy
import re
import importlib
import os
import tempfile
from collections import OrderedDict
import string
import h5py
import numpy as np
import torch
from tqdm import tqdm
from transformers import (
AutoTokenizer,
CONFIG_MAPPING,
MODEL_FOR_CAUSAL_LM_MAPPING,
MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING,
MODEL_FOR_MASKED_LM_MAPPING,
MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING,
MODEL_FOR_OBJECT_DETECTION_MAPPING,
MODEL_FOR_PRETRAINING_MAPPING,
MODEL_FOR_QUESTION_ANSWERING_MAPPING,
MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING,
MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
MODEL_MAPPING,
MODEL_WITH_LM_HEAD_MAPPING,
TF_MODEL_FOR_CAUSAL_LM_MAPPING,
TF_MODEL_FOR_MASKED_LM_MAPPING,
TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
TF_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING,
TF_MODEL_FOR_PRETRAINING_MAPPING,
TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING,
TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
TF_MODEL_MAPPING,
TF_MODEL_WITH_LM_HEAD_MAPPING,
logging,
)
logging.set_verbosity_error()
HOME = os.getenv("HOME")
weights_path = f"{HOME}/data/weights"
def to_snake_case(name):
"https://stackoverflow.com/questions/1175208/elegant-python-function-to-convert-camelcase-to-snake-case"
name = re.sub("(.)([A-Z][a-z]+)", r"\1_\2", name)
name = re.sub("__([A-Z])", r"_\1", name)
name = re.sub("([a-z0-9])([A-Z])", r"\1_\2", name)
return name.lower()
def flattened(somelist):
output = []
for item in somelist:
if isinstance(item, (tuple, list)):
output.extend(list(item))
else:
output.append(item)
return output
# UTILITY METHODS
def get_tiny_config_from_class(configuration_class):
"""
Retrieve a tiny configuration from the configuration class. It uses each class' `ModelTester`.
Args:
configuration_class: Subclass of `PreTrainedConfig`.
Returns:
an instance of the configuration passed, with very small hyper-parameters
"""
model_type = configuration_class.model_type
camel_case_model_name = configuration_class.__name__.split("Config")[0]
try:
module = importlib.import_module(f".test_modeling_{model_type.replace('-', '_')}", package="tests")
model_tester_class = getattr(module, f"{camel_case_model_name}ModelTester", None)
except ModuleNotFoundError:
print(f"Will not build {model_type}: no model tester or cannot find the testing module from the model name.")
return
if model_tester_class is None:
return
model_tester = model_tester_class(parent=None)
if hasattr(model_tester, "get_pipeline_config"):
return model_tester.get_pipeline_config()
elif hasattr(model_tester, "get_config"):
return model_tester.get_config()
def eventual_create_tokenizer(dirname, architecture, config):
try:
_ = AutoTokenizer.from_pretrained(dirname, local_files_only=True)
return
except:
pass
checkpoint = get_checkpoint_from_architecture(architecture)
if checkpoint is None:
return
tokenizer = get_tiny_tokenizer_from_checkpoint(checkpoint)
if tokenizer is None:
return
if hasattr(config, "max_position_embeddings"):
tokenizer.model_max_length = config.max_position_embeddings
assert tokenizer.vocab_size <= config.vocab_size
if checkpoint is not None and tokenizer is not None:
try:
tokenizer.save_pretrained(dirname)
except Exception:
pass
try:
tokenizer._tokenizer.save(f"{dirname}/tokenizer.json")
except Exception:
return
_ = AutoTokenizer.from_pretrained(dirname, local_files_only=True)
# print(f"SUCCESS {dirname}")
def build_pt_architecture(architecture, config):
dirname = os.path.join(weights_path, config.model_type, to_snake_case(architecture.__name__))
try:
model = architecture.from_pretrained(dirname, local_files_only=True)
# Already created
print(f"{dirname} already created")
return
except Exception:
pass
state_dict = {}
if "DPRQuestionEncoder" in architecture.__name__:
# Not supported
return
if "ReformerModelWithLMHead" in architecture.__name__:
config.is_decoder = True
if "ReformerForMaskedLM" in architecture.__name__:
config.is_decoder = False
os.makedirs(dirname, exist_ok=True)
config.save_pretrained(dirname)
eventual_create_tokenizer(dirname, architecture, config)
model = architecture.from_pretrained(None, config=config, state_dict=state_dict, local_files_only=True)
model.save_pretrained(dirname)
# Make sure we can load what we just saved
model = architecture.from_pretrained(dirname, local_files_only=True)
def build_pytorch_weights_from_multiple_architectures(pytorch_architectures):
# Create the PyTorch tiny models
for config, architectures in tqdm(pytorch_architectures.items(), desc="Building PyTorch weights"):
base_tiny_config = get_tiny_config_from_class(config)
if base_tiny_config is None:
continue
flat_architectures = flattened(architectures)
for architecture in flat_architectures:
build_pt_architecture(architecture, copy.deepcopy(base_tiny_config))
def build_tf_architecture(architecture, config):
# [2:] remove TF prefix of architecture name
dirname = os.path.join(weights_path, config.model_type, to_snake_case(architecture.__name__[2:]))
try:
model = architecture.from_pretrained(dirname, local_files_only=True)
# Already created
return
except Exception:
pass
if "DPRQuestionEncoder" in architecture.__name__:
# Not supported
return
if "ReformerModelWithLMHead" in architecture.__name__:
config.is_decoder = True
if "ReformerForMaskedLM" in architecture.__name__:
config.is_decoder = False
config.num_labels = 2
os.makedirs(dirname, exist_ok=True)
config.save_pretrained(dirname)
eventual_create_tokenizer(dirname, architecture, config)
try:
model = architecture.from_pretrained(dirname, config=config, from_pt=True, local_files_only=True)
except Exception as e:
raise ValueError(f"Couldn't load {architecture.__name__}.") from e
model.save_pretrained(dirname)
model = architecture.from_pretrained(dirname, local_files_only=True)
def build_tensorflow_weights_from_multiple_architectures(tensorflow_architectures):
# Create the TensorFlow tiny models
for config, architectures in tqdm(tensorflow_architectures.items(), desc="Building TensorFlow weights"):
base_tiny_config = get_tiny_config_from_class(config)
if base_tiny_config is None:
continue
flat_architectures = flattened(architectures)
for architecture in flat_architectures:
build_tf_architecture(architecture, copy.deepcopy(base_tiny_config))
def get_tiny_tokenizer_from_checkpoint(checkpoint):
try:
tokenizer = AutoTokenizer.from_pretrained(checkpoint, local_files_only=True)
except Exception:
return
# logger.warning("Training new from iterator ...")
vocabulary = string.ascii_letters + string.digits + " "
if not tokenizer.__class__.__name__.endswith("Fast"):
return
try:
tokenizer = tokenizer.train_new_from_iterator(vocabulary, vocab_size=len(vocabulary), show_progress=False)
except: # noqa: E722
return
# logger.warning("Trained.")
return tokenizer
def get_checkpoint_from_architecture(architecture):
try:
module = importlib.import_module(architecture.__module__)
except Exception:
# logger.error(f"Ignoring architecture {architecture}")
return
if hasattr(module, "_CHECKPOINT_FOR_DOC"):
return module._CHECKPOINT_FOR_DOC
else:
# logger.warning(f"Can't retrieve checkpoint from {architecture.__name__}")
pass
def pt_architectures():
pytorch_mappings = [
MODEL_MAPPING,
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
MODEL_FOR_MASKED_LM_MAPPING,
MODEL_FOR_PRETRAINING_MAPPING,
MODEL_FOR_CAUSAL_LM_MAPPING,
MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING,
MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING,
MODEL_FOR_OBJECT_DETECTION_MAPPING,
MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
MODEL_WITH_LM_HEAD_MAPPING,
MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING,
MODEL_FOR_QUESTION_ANSWERING_MAPPING,
MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
]
pt_architectures = {
config: [pytorch_mapping[config] for pytorch_mapping in pytorch_mappings if config in pytorch_mapping]
for config in CONFIG_MAPPING.values()
}
build_pytorch_weights_from_multiple_architectures(pt_architectures)
print("Built PyTorch weights")
for config, architectures in tqdm(pt_architectures.items(), desc="Checking PyTorch weights validity"):
base_tiny_config = get_tiny_config_from_class(config)
if base_tiny_config is None:
continue
flat_architectures = flattened(architectures)
for architecture in flat_architectures:
if "DPRQuestionEncoder" in architecture.__name__:
continue
dirname = os.path.join(weights_path, config.model_type, to_snake_case(architecture.__name__))
model, loading_info = architecture.from_pretrained(
dirname,
output_loading_info=True,
local_files_only=True,
)
if len(loading_info["missing_keys"]) > 0:
raise ValueError(f"Missing weights when loading PyTorch checkpoints: {loading_info['missing_keys']}")
print("Checked PyTorch weights")
def tf_architectures():
tensorflow_mappings = [
TF_MODEL_MAPPING,
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_MASKED_LM_MAPPING,
TF_MODEL_FOR_PRETRAINING_MAPPING,
TF_MODEL_FOR_CAUSAL_LM_MAPPING,
TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
TF_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING,
TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
TF_MODEL_WITH_LM_HEAD_MAPPING,
TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING,
TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
]
tf_architectures = {
config: [
tensorflow_mapping[config] for tensorflow_mapping in tensorflow_mappings if config in tensorflow_mapping
]
for config in CONFIG_MAPPING.values()
}
build_tensorflow_weights_from_multiple_architectures(tf_architectures)
print("Built TensorFlow weights")
for config, architectures in tqdm(tf_architectures.items(), desc="Checking TensorFlow weights validity"):
base_tiny_config = get_tiny_config_from_class(config)
if base_tiny_config is None:
continue
flat_architectures = flattened(architectures)
for architecture in flat_architectures:
if "DPRQuestionEncoder" in architecture.__name__:
# Not supported
return
# [2:] to remove TF prefix
dirname = os.path.join(weights_path, config.model_type, to_snake_case(architecture.__name__[2:]))
try:
model, loading_info = architecture.from_pretrained(
dirname, output_loading_info=True, local_files_only=True
)
except Exception as e:
raise ValueError(f"Couldn't load {architecture.__name__}") from e
if len(loading_info["missing_keys"]) != 0:
required_weights_missing = []
for missing_key in loading_info["missing_keys"]:
if "dropout" not in missing_key:
required_weights_missing.append(missing_key)
if len(required_weights_missing) > 0:
raise ValueError(f"Found missing weights in {architecture}: {required_weights_missing}")
print("Checked TensorFlow weights")
def main():
# Define the PyTorch and TensorFlow mappings
pt_architectures()
tf_architectures()
if __name__ == "__main__":
main()
|