NamCyan commited on
Commit
7e33e67
1 Parent(s): 8aa803c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +29 -16
README.md CHANGED
@@ -13,28 +13,23 @@ tags: []
13
 
14
  ### Model Description
15
 
16
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
17
 
18
  - **Developed by:** [Nam Hai Le](https://github.com/NamCyan)
19
  - **Model type:** Decoder-based PLMs
20
  - **Language(s):** Java
21
- - **Finetuned from model [optional]:** [Magicoder](https://huggingface.co/ise-uiuc/Magicoder-S-DS-6.7B)
22
 
23
  ### Model Sources [optional]
24
 
25
- <!-- Provide the basic links for the model. -->
26
-
27
  - **Repository:** [Tesoro](https://github.com/NamCyan/tesoro.git)
28
  - **Paper:** [To be update]
29
 
30
- ## Uses
31
-
32
-
33
  ## How to Get Started with the Model
34
 
35
  Use the code below to get started with the model.
36
 
37
- ```
38
  from transformers import AutoModelForSequenceClassification, AutoTokenizer
39
 
40
  tokenizer = AutoTokenizer.from_pretrained("NamCyan/Magicoder-S-DS-6.7B-technical-debt-code-tesoro")
@@ -44,14 +39,32 @@ model = AutoModelForSequenceClassification.from_pretrained("NamCyan/Magicoder-S-
44
 
45
  ## Training Details
46
 
47
- ### Training Data
48
-
49
-
50
- ## Evaluation
51
-
52
-
53
- #### Summary
54
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55
 
56
 
57
  **BibTeX:**
 
13
 
14
  ### Model Description
15
 
16
+ This model is the part of Tesoro project, used for detecting technical debt in source code. More information can be found at [Tesoro HomePage](https://github.com/NamCyan/tesoro.git).
17
 
18
  - **Developed by:** [Nam Hai Le](https://github.com/NamCyan)
19
  - **Model type:** Decoder-based PLMs
20
  - **Language(s):** Java
21
+ - **Finetuned from model:** [Magicoder](https://huggingface.co/ise-uiuc/Magicoder-S-DS-6.7B)
22
 
23
  ### Model Sources [optional]
24
 
 
 
25
  - **Repository:** [Tesoro](https://github.com/NamCyan/tesoro.git)
26
  - **Paper:** [To be update]
27
 
 
 
 
28
  ## How to Get Started with the Model
29
 
30
  Use the code below to get started with the model.
31
 
32
+ ```python
33
  from transformers import AutoModelForSequenceClassification, AutoTokenizer
34
 
35
  tokenizer = AutoTokenizer.from_pretrained("NamCyan/Magicoder-S-DS-6.7B-technical-debt-code-tesoro")
 
39
 
40
  ## Training Details
41
 
42
+ - Training Data: The model is finetuned using [tesoro-code](https://huggingface.co/datasets/NamCyan/tesoro-code)
43
+
44
+ - Infrastructure: Training process is conducted on two NVIDIA A100 GPUs with 80GB of VRAM. [LoRa](https://arxiv.org/abs/2106.09685) is adopted to train this model.
45
+
46
+
47
+ ## Leaderboard
48
+ | Model | Model size | EM | F1 |
49
+ |:-------------|:-----------|:------------------|:------------------|
50
+ | **Encoder-based PLMs** |
51
+ | [CodeBERT](https://huggingface.co/microsoft/codebert-base) | 125M | 38.28 | 43.47 |
52
+ | [UniXCoder](https://huggingface.co/microsoft/unixcoder-base) | 125M | 38.12 | 42.58 |
53
+ | [GraphCodeBERT](https://huggingface.co/microsoft/graphcodebert-base)| 125M | *39.38* | *44.21* |
54
+ | [RoBERTa](https://huggingface.co/FacebookAI/roberta-base) | 125M | 35.37 | 38.22 |
55
+ | [ALBERT](https://huggingface.co/albert/albert-base-v2) | 11.8M | 39.32 | 41.99 |
56
+ | **Encoder-Decoder-based PLMs** |
57
+ | [PLBART](https://huggingface.co/uclanlp/plbart-base) | 140M | 36.85 | 39.90 |
58
+ | [Codet5](https://huggingface.co/Salesforce/codet5-base) | 220M | 32.66 | 35.41 |
59
+ | [CodeT5+](https://huggingface.co/Salesforce/codet5p-220m) | 220M | 37.91 | 41.96 |
60
+ | **Decoder-based PLMs (LLMs)** |
61
+ | [TinyLlama](https://huggingface.co/TinyLlama/TinyLlama_v1.1_math_code) | 1.03B | 37.05 | 40.05 |
62
+ | [DeepSeek-Coder](https://huggingface.co/deepseek-ai/deepseek-coder-1.3b-base) | 1.28B | **42.52** | **46.19** |
63
+ | [OpenCodeInterpreter](https://huggingface.co/m-a-p/OpenCodeInterpreter-DS-1.3B) | 1.35B | 38.16 | 41.76 |
64
+ | [phi-2](https://huggingface.co/microsoft/phi-2) | 2.78B | 37.92 | 41.57 |
65
+ | [starcoder2](https://huggingface.co/bigcode/starcoder2-3b) | 3.03B | 35.37 | 41.77 |
66
+ | [CodeLlama](https://huggingface.co/codellama/CodeLlama-7b-hf) | 6.74B | 34.14 | 38.16 |
67
+ | [Magicoder](https://huggingface.co/ise-uiuc/Magicoder-S-DS-6.7B) | 6.74B | 39.14 | 42.49 |
68
 
69
 
70
  **BibTeX:**