Update README.md
Browse files
README.md
CHANGED
@@ -13,28 +13,23 @@ tags: []
|
|
13 |
|
14 |
### Model Description
|
15 |
|
16 |
-
This is the
|
17 |
|
18 |
- **Developed by:** [Nam Hai Le](https://github.com/NamCyan)
|
19 |
- **Model type:** Decoder-based PLMs
|
20 |
- **Language(s):** Java
|
21 |
-
- **Finetuned from model
|
22 |
|
23 |
### Model Sources [optional]
|
24 |
|
25 |
-
<!-- Provide the basic links for the model. -->
|
26 |
-
|
27 |
- **Repository:** [Tesoro](https://github.com/NamCyan/tesoro.git)
|
28 |
- **Paper:** [To be update]
|
29 |
|
30 |
-
## Uses
|
31 |
-
|
32 |
-
|
33 |
## How to Get Started with the Model
|
34 |
|
35 |
Use the code below to get started with the model.
|
36 |
|
37 |
-
```
|
38 |
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
39 |
|
40 |
tokenizer = AutoTokenizer.from_pretrained("NamCyan/Magicoder-S-DS-6.7B-technical-debt-code-tesoro")
|
@@ -44,14 +39,32 @@ model = AutoModelForSequenceClassification.from_pretrained("NamCyan/Magicoder-S-
|
|
44 |
|
45 |
## Training Details
|
46 |
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
|
57 |
**BibTeX:**
|
|
|
13 |
|
14 |
### Model Description
|
15 |
|
16 |
+
This model is the part of Tesoro project, used for detecting technical debt in source code. More information can be found at [Tesoro HomePage](https://github.com/NamCyan/tesoro.git).
|
17 |
|
18 |
- **Developed by:** [Nam Hai Le](https://github.com/NamCyan)
|
19 |
- **Model type:** Decoder-based PLMs
|
20 |
- **Language(s):** Java
|
21 |
+
- **Finetuned from model:** [Magicoder](https://huggingface.co/ise-uiuc/Magicoder-S-DS-6.7B)
|
22 |
|
23 |
### Model Sources [optional]
|
24 |
|
|
|
|
|
25 |
- **Repository:** [Tesoro](https://github.com/NamCyan/tesoro.git)
|
26 |
- **Paper:** [To be update]
|
27 |
|
|
|
|
|
|
|
28 |
## How to Get Started with the Model
|
29 |
|
30 |
Use the code below to get started with the model.
|
31 |
|
32 |
+
```python
|
33 |
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
34 |
|
35 |
tokenizer = AutoTokenizer.from_pretrained("NamCyan/Magicoder-S-DS-6.7B-technical-debt-code-tesoro")
|
|
|
39 |
|
40 |
## Training Details
|
41 |
|
42 |
+
- Training Data: The model is finetuned using [tesoro-code](https://huggingface.co/datasets/NamCyan/tesoro-code)
|
43 |
+
|
44 |
+
- Infrastructure: Training process is conducted on two NVIDIA A100 GPUs with 80GB of VRAM. [LoRa](https://arxiv.org/abs/2106.09685) is adopted to train this model.
|
45 |
+
|
46 |
+
|
47 |
+
## Leaderboard
|
48 |
+
| Model | Model size | EM | F1 |
|
49 |
+
|:-------------|:-----------|:------------------|:------------------|
|
50 |
+
| **Encoder-based PLMs** |
|
51 |
+
| [CodeBERT](https://huggingface.co/microsoft/codebert-base) | 125M | 38.28 | 43.47 |
|
52 |
+
| [UniXCoder](https://huggingface.co/microsoft/unixcoder-base) | 125M | 38.12 | 42.58 |
|
53 |
+
| [GraphCodeBERT](https://huggingface.co/microsoft/graphcodebert-base)| 125M | *39.38* | *44.21* |
|
54 |
+
| [RoBERTa](https://huggingface.co/FacebookAI/roberta-base) | 125M | 35.37 | 38.22 |
|
55 |
+
| [ALBERT](https://huggingface.co/albert/albert-base-v2) | 11.8M | 39.32 | 41.99 |
|
56 |
+
| **Encoder-Decoder-based PLMs** |
|
57 |
+
| [PLBART](https://huggingface.co/uclanlp/plbart-base) | 140M | 36.85 | 39.90 |
|
58 |
+
| [Codet5](https://huggingface.co/Salesforce/codet5-base) | 220M | 32.66 | 35.41 |
|
59 |
+
| [CodeT5+](https://huggingface.co/Salesforce/codet5p-220m) | 220M | 37.91 | 41.96 |
|
60 |
+
| **Decoder-based PLMs (LLMs)** |
|
61 |
+
| [TinyLlama](https://huggingface.co/TinyLlama/TinyLlama_v1.1_math_code) | 1.03B | 37.05 | 40.05 |
|
62 |
+
| [DeepSeek-Coder](https://huggingface.co/deepseek-ai/deepseek-coder-1.3b-base) | 1.28B | **42.52** | **46.19** |
|
63 |
+
| [OpenCodeInterpreter](https://huggingface.co/m-a-p/OpenCodeInterpreter-DS-1.3B) | 1.35B | 38.16 | 41.76 |
|
64 |
+
| [phi-2](https://huggingface.co/microsoft/phi-2) | 2.78B | 37.92 | 41.57 |
|
65 |
+
| [starcoder2](https://huggingface.co/bigcode/starcoder2-3b) | 3.03B | 35.37 | 41.77 |
|
66 |
+
| [CodeLlama](https://huggingface.co/codellama/CodeLlama-7b-hf) | 6.74B | 34.14 | 38.16 |
|
67 |
+
| [Magicoder](https://huggingface.co/ise-uiuc/Magicoder-S-DS-6.7B) | 6.74B | 39.14 | 42.49 |
|
68 |
|
69 |
|
70 |
**BibTeX:**
|