File size: 23,529 Bytes
b8ecd45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
import os
import json
import sys
import io
import base64
import platform
import subprocess as sp
from PIL import PngImagePlugin, Image

from modules import shared
import gradio as gr

import modules.ui
from modules.ui_components import ToolButton
import modules.extras
import modules.generation_parameters_copypaste as parameters_copypaste

from scripts import safetensors_hack, model_util
from scripts.model_util import MAX_MODEL_COUNT


folder_symbol = "\U0001f4c2"  # 📂
keycap_symbols = [
    "\u0031\ufe0f\u20e3",  # 1️⃣
    "\u0032\ufe0f\u20e3",  # 2️⃣
    "\u0033\ufe0f\u20e3",  # 3️⃣
    "\u0034\ufe0f\u20e3",  # 4️⃣
    "\u0035\ufe0f\u20e3",  # 5️⃣
    "\u0036\ufe0f\u20e3",  # 6️⃣
    "\u0037\ufe0f\u20e3",  # 7️⃣
    "\u0038\ufe0f\u20e3",  # 8️
    "\u0039\ufe0f\u20e3",  # 9️
    "\u1f51f",  # 🔟
]


def write_webui_model_preview_image(model_path, image):
    basename, ext = os.path.splitext(model_path)
    preview_path = f"{basename}.png"

    # Copy any text-only metadata
    use_metadata = False
    metadata = PngImagePlugin.PngInfo()
    for key, value in image.info.items():
        if isinstance(key, str) and isinstance(value, str):
            metadata.add_text(key, value)
            use_metadata = True

    image.save(preview_path, "PNG", pnginfo=(metadata if use_metadata else None))


def delete_webui_model_preview_image(model_path):
    basename, ext = os.path.splitext(model_path)
    preview_paths = [f"{basename}.preview.png", f"{basename}.png"]

    for preview_path in preview_paths:
        if os.path.isfile(preview_path):
            os.unlink(preview_path)


def decode_base64_to_pil(encoding):
    if encoding.startswith("data:image/"):
        encoding = encoding.split(";")[1].split(",")[1]
    return Image.open(io.BytesIO(base64.b64decode(encoding)))


def encode_pil_to_base64(image):
    with io.BytesIO() as output_bytes:
        # Copy any text-only metadata
        use_metadata = False
        metadata = PngImagePlugin.PngInfo()
        for key, value in image.info.items():
            if isinstance(key, str) and isinstance(value, str):
                metadata.add_text(key, value)
                use_metadata = True

        image.save(output_bytes, "PNG", pnginfo=(metadata if use_metadata else None))
        bytes_data = output_bytes.getvalue()
    return base64.b64encode(bytes_data)


def open_folder(f):
    if not os.path.exists(f):
        print(f'Folder "{f}" does not exist. After you create an image, the folder will be created.')
        return
    elif not os.path.isdir(f):
        print(
            f"""
WARNING
An open_folder request was made with an argument that is not a folder.
This could be an error or a malicious attempt to run code on your computer.
Requested path was: {f}
""",
            file=sys.stderr,
        )
        return

    if not shared.cmd_opts.hide_ui_dir_config:
        path = os.path.normpath(f)
        if platform.system() == "Windows":
            os.startfile(path)
        elif platform.system() == "Darwin":
            sp.Popen(["open", path])
        elif "microsoft-standard-WSL2" in platform.uname().release:
            sp.Popen(["wsl-open", path])
        else:
            sp.Popen(["xdg-open", path])


def copy_metadata_to_all(module, model_path, copy_dir, same_session_only, missing_meta_only, cover_image):
    """
    Given a model with metadata, copies that metadata to all models in copy_dir.

    :str module: Module name ("LoRA")
    :str model: Model key in lora_models ("MyModel(123456abcdef)")
    :str copy_dir: Directory to copy to
    :bool same_session_only: Only copy to modules with the same ss_session_id
    :bool missing_meta_only: Only copy to modules that are missing user metadata
    :Optional[Image] cover_image: Cover image to embed in the file as base64
    :returns: gr.HTML.update()
    """
    if model_path == "None":
        return "No model selected."

    if not os.path.isfile(model_path):
        return f"Model path not found: {model_path}"

    model_path = os.path.realpath(model_path)

    if os.path.splitext(model_path)[1] != ".safetensors":
        return "Model is not in .safetensors format."

    if not os.path.isdir(copy_dir):
        return "Please provide a directory containing models in .safetensors format."

    print(f"[MetadataEditor] Copying metadata to models in {copy_dir}.")
    metadata = model_util.read_model_metadata(model_path, module)
    count = 0
    for entry in os.scandir(copy_dir):
        if entry.is_file():
            path = os.path.realpath(os.path.join(copy_dir, entry.name))
            if path != model_path and model_util.is_safetensors(path):
                if same_session_only:
                    other_metadata = safetensors_hack.read_metadata(path)
                    if missing_meta_only and other_metadata.get("ssmd_display_name", "").strip():
                        print(f"[MetadataEditor] Skipping {path} as it already has metadata")
                        continue

                    session_id = metadata.get("ss_session_id", None)
                    other_session_id = other_metadata.get("ss_session_id", None)
                    if session_id is None or other_session_id is None or session_id != other_session_id:
                        continue

                updates = {
                    "ssmd_cover_images": "[]",
                    "ssmd_display_name": "",
                    "ssmd_version": "",
                    "ssmd_keywords": "",
                    "ssmd_author": "",
                    "ssmd_source": "",
                    "ssmd_description": "",
                    "ssmd_rating": "0",
                    "ssmd_tags": "",
                }

                for k, v in metadata.items():
                    if k.startswith("ssmd_") and k != "ssmd_cover_images":
                        updates[k] = v

                model_util.write_model_metadata(path, module, updates)
                count += 1

    print(f"[MetadataEditor] Updated {count} models in directory {copy_dir}.")
    return f"Updated {count} models in directory {copy_dir}."


def load_cover_image(model_path, metadata):
    """
    Loads a cover image either from embedded metadata or an image file with
    .preview.png/.png format
    """
    cover_images = json.loads(metadata.get("ssmd_cover_images", "[]"))
    cover_image = None
    if len(cover_images) > 0:
        print("[MetadataEditor] Loading embedded cover image.")
        cover_image = decode_base64_to_pil(cover_images[0])
    else:
        basename, ext = os.path.splitext(model_path)

        preview_paths = [f"{basename}.preview.png", f"{basename}.png"]

        for preview_path in preview_paths:
            if os.path.isfile(preview_path):
                print(f"[MetadataEditor] Loading webui preview image: {preview_path}")
                cover_image = Image.open(preview_path)

    return cover_image


# Dummy value since gr.Dataframe cannot handle an empty list
# https://github.com/gradio-app/gradio/issues/3182
unknown_folders = ["(Unknown)", 0, 0, 0]


def refresh_metadata(module, model_path):
    """
    Reads metadata from the model on disk and updates all Gradio components
    """
    if model_path == "None":
        return {}, None, "", "", "", "", "", 0, "", "", "", "", "", {}, [unknown_folders]

    if not os.path.isfile(model_path):
        return (
            {"info": f"Model path not found: {model_path}"},
            None,
            "",
            "",
            "",
            "",
            "",
            0,
            "",
            "",
            "",
            "",
            "",
            {},
            [unknown_folders],
        )

    if os.path.splitext(model_path)[1] != ".safetensors":
        return (
            {"info": "Model is not in .safetensors format."},
            None,
            "",
            "",
            "",
            "",
            "",
            0,
            "",
            "",
            "",
            "",
            "",
            {},
            [unknown_folders],
        )

    metadata = model_util.read_model_metadata(model_path, module)

    if metadata is None:
        training_params = {}
        metadata = {}
    else:
        training_params = {k: v for k, v in metadata.items() if k.startswith("ss_")}

    cover_image = load_cover_image(model_path, metadata)

    display_name = metadata.get("ssmd_display_name", "")
    author = metadata.get("ssmd_author", "")
    # version = metadata.get("ssmd_version", "")
    source = metadata.get("ssmd_source", "")
    keywords = metadata.get("ssmd_keywords", "")
    description = metadata.get("ssmd_description", "")
    rating = int(metadata.get("ssmd_rating", "0"))
    tags = metadata.get("ssmd_tags", "")
    model_hash = metadata.get("sshs_model_hash", model_util.cache("hashes").get(model_path, {}).get("model", ""))
    legacy_hash = metadata.get("sshs_legacy_hash", model_util.cache("hashes").get(model_path, {}).get("legacy", ""))

    top_tags = {}
    if "ss_tag_frequency" in training_params:
        tag_frequency = json.loads(training_params.pop("ss_tag_frequency"))
        count_max = 0
        for dir, frequencies in tag_frequency.items():
            for tag, count in frequencies.items():
                tag = tag.strip()
                existing = top_tags.get(tag, 0)
                top_tags[tag] = count + existing
        if len(top_tags) > 0:
            top_tags = dict(sorted(top_tags.items(), key=lambda x: x[1], reverse=True))

            count_max = max(top_tags.values())
            top_tags = {k: float(v / count_max) for k, v in top_tags.items()}

    dataset_folders = []
    if "ss_dataset_dirs" in training_params:
        dataset_dirs = json.loads(training_params.pop("ss_dataset_dirs"))
        for dir, counts in dataset_dirs.items():
            img_count = int(counts["img_count"])
            n_repeats = int(counts["n_repeats"])
            dataset_folders.append([dir, img_count, n_repeats, img_count * n_repeats])
    if dataset_folders:
        dataset_folders.append(
            ["(Total)", sum(r[1] for r in dataset_folders), sum(r[2] for r in dataset_folders), sum(r[3] for r in dataset_folders)]
        )
    else:
        dataset_folders.append(unknown_folders)

    return (
        training_params,
        cover_image,
        display_name,
        author,
        source,
        keywords,
        description,
        rating,
        tags,
        model_hash,
        legacy_hash,
        model_path,
        os.path.dirname(model_path),
        top_tags,
        dataset_folders,
    )


def save_metadata(module, model_path, cover_image, display_name, author, source, keywords, description, rating, tags):
    """
    Writes metadata from the Gradio components to the model file
    """
    if model_path == "None":
        return "No model selected.", "", ""

    if not os.path.isfile(model_path):
        return f"file not found: {model_path}", "", ""

    if os.path.splitext(model_path)[1] != ".safetensors":
        return "Model is not in .safetensors format", "", ""

    metadata = safetensors_hack.read_metadata(model_path)
    model_hash = safetensors_hack.hash_file(model_path)
    legacy_hash = model_util.get_legacy_hash(metadata, model_path)

    # TODO: Support multiple images
    # Blocked on gradio not having a gallery upload option
    # https://github.com/gradio-app/gradio/issues/1379
    cover_images = []
    if cover_image is not None:
        cover_images.append(encode_pil_to_base64(cover_image).decode("ascii"))

    # NOTE: User-specified metadata should NOT be prefixed with "ss_". This is
    # to maintain backwards compatibility with the old hashing method. "ss_"
    # should be used for training parameters that will never be manually
    # updated on the model.
    updates = {
        "ssmd_cover_images": json.dumps(cover_images),
        "ssmd_display_name": display_name,
        "ssmd_author": author,
        # "ssmd_version": version,
        "ssmd_source": source,
        "ssmd_keywords": keywords,
        "ssmd_description": description,
        "ssmd_rating": rating,
        "ssmd_tags": tags,
        "sshs_model_hash": model_hash,
        "sshs_legacy_hash": legacy_hash,
    }

    model_util.write_model_metadata(model_path, module, updates)
    if cover_image is None:
        delete_webui_model_preview_image(model_path)
    else:
        write_webui_model_preview_image(model_path, cover_image)

    model_name = os.path.basename(model_path)
    return f"Model saved: {model_name}", model_hash, legacy_hash


model_name_filter = ""


def get_filtered_model_paths(s):
    # newer Gradio seems to show None in the list?
    # if not s:
    #     return ["None"] + list(model_util.lora_models.values())
    # return ["None"] + [v for v in model_util.lora_models.values() if v and s in v.lower()]
    if not s:
        l =  list(model_util.lora_models.values())
    else:
        l =  [v for v in model_util.lora_models.values() if v and s in v.lower()]
    l = [v for v in l if v]     # remove None
    l = ["None"] + l
    return l

def get_filtered_model_paths_global():
    global model_name_filter
    return get_filtered_model_paths(model_name_filter)


def setup_ui(addnet_paste_params):
    """
    :dict addnet_paste_params: Dictionary of txt2img/img2img controls for each model weight slider,
                               for sending module and model to them from the metadata editor
    """
    can_edit = False

    with gr.Row(equal_height=True):
        # Lefthand column
        with gr.Column(variant="panel"):
            # Module and model selector
            with gr.Row():
                model_filter = gr.Textbox("", label="Model path filter", placeholder="Filter models by path name")

                def update_model_filter(s):
                    global model_name_filter
                    model_name_filter = s.strip().lower()

                model_filter.change(update_model_filter, inputs=[model_filter], outputs=[])
            with gr.Row():
                module = gr.Dropdown(
                    ["LoRA"],
                    label="Network module",
                    value="LoRA",
                    interactive=True,
                    elem_id="additional_networks_metadata_editor_module",
                )
                model = gr.Dropdown(
                    get_filtered_model_paths_global(),
                    label="Model",
                    value="None",
                    interactive=True,
                    elem_id="additional_networks_metadata_editor_model",
                )
                modules.ui.create_refresh_button(
                    model, model_util.update_models, lambda: {"choices": get_filtered_model_paths_global()}, "refresh_lora_models"
                )

                def submit_model_filter(s):
                    global model_name_filter
                    model_name_filter = s
                    paths = get_filtered_model_paths(s)
                    return gr.Dropdown.update(choices=paths, value="None")

                model_filter.submit(submit_model_filter, inputs=[model_filter], outputs=[model])

            # Model hashes and path
            with gr.Row():
                model_hash = gr.Textbox("", label="Model hash", interactive=False)
                legacy_hash = gr.Textbox("", label="Legacy hash", interactive=False)
            with gr.Row():
                model_path = gr.Textbox("", label="Model path", interactive=False)
                open_folder_button = ToolButton(
                    value=folder_symbol,
                    elem_id="hidden_element" if shared.cmd_opts.hide_ui_dir_config else "open_folder_metadata_editor",
                )

            # Send to txt2img/img2img buttons
            for tabname in ["txt2img", "img2img"]:
                with gr.Row():
                    with gr.Box():
                        with gr.Row():
                            gr.HTML(f"Send to {tabname}:")
                            for i in range(MAX_MODEL_COUNT):
                                send_to_button = ToolButton(
                                    value=keycap_symbols[i], elem_id=f"additional_networks_send_to_{tabname}_{i}"
                                )
                                send_to_button.click(
                                    fn=lambda modu, mod: (modu, model_util.find_closest_lora_model_name(mod) or "None"),
                                    inputs=[module, model],
                                    outputs=[addnet_paste_params[tabname][i]["module"], addnet_paste_params[tabname][i]["model"]],
                                )
                                send_to_button.click(fn=None, _js=f"addnet_switch_to_{tabname}", inputs=None, outputs=None)

            # "Copy metadata to other models" panel
            with gr.Row():
                with gr.Column():
                    gr.HTML(value="Copy metadata to other models in directory")
                    copy_metadata_dir = gr.Textbox(
                        "",
                        label="Containing directory",
                        placeholder="All models in this directory will receive the selected model's metadata",
                    )
                    with gr.Row():
                        copy_same_session = gr.Checkbox(True, label="Only copy to models with same session ID")
                        copy_no_metadata = gr.Checkbox(True, label="Only copy to models with no metadata")
                    copy_metadata_button = gr.Button("Copy Metadata", variant="primary")

        # Center column, metadata viewer/editor
        with gr.Column():
            with gr.Row():
                display_name = gr.Textbox(value="", label="Name", placeholder="Display name for this model", interactive=can_edit)
                author = gr.Textbox(value="", label="Author", placeholder="Author of this model", interactive=can_edit)
            with gr.Row():
                keywords = gr.Textbox(
                    value="", label="Keywords", placeholder="Activation keywords, comma-separated", interactive=can_edit
                )
            with gr.Row():
                description = gr.Textbox(
                    value="",
                    label="Description",
                    placeholder="Model description/readme/notes/instructions",
                    lines=15,
                    interactive=can_edit,
                )
            with gr.Row():
                source = gr.Textbox(
                    value="", label="Source", placeholder="Source URL where this model could be found", interactive=can_edit
                )
            with gr.Row():
                rating = gr.Slider(minimum=0, maximum=10, step=1, label="Rating", value=0, interactive=can_edit)
                tags = gr.Textbox(
                    value="",
                    label="Tags",
                    placeholder='Comma-separated list of tags ("artist, style, character, 2d, 3d...")',
                    lines=2,
                    interactive=can_edit,
                )
            with gr.Row():
                editing_enabled = gr.Checkbox(label="Editing Enabled", value=can_edit)
                with gr.Row():
                    save_metadata_button = gr.Button("Save Metadata", variant="primary", interactive=can_edit)
            with gr.Row():
                save_output = gr.HTML("")

        # Righthand column, cover image and training parameters view
        with gr.Column():
            # Cover image
            with gr.Row():
                cover_image = gr.Image(
                    label="Cover image",
                    elem_id="additional_networks_cover_image",
                    source="upload",
                    interactive=can_edit,
                    type="pil",
                    image_mode="RGBA",
                    height=480
                )

            # Image parameters
            with gr.Accordion("Image Parameters", open=False):
                with gr.Row():
                    info2 = gr.HTML()
            with gr.Row():
                try:
                    send_to_buttons = parameters_copypaste.create_buttons(["txt2img", "img2img", "inpaint", "extras"])
                except:
                    pass

            # Training info, below cover image
            with gr.Accordion("Training info", open=False):
                # Top tags used
                with gr.Row():
                    max_top_tags = int(shared.opts.data.get("additional_networks_max_top_tags", 20))
                    most_frequent_tags = gr.Label(value={}, label="Most frequent tags in captions", num_top_classes=max_top_tags)

                # Dataset folders
                with gr.Row():
                    max_dataset_folders = int(shared.opts.data.get("additional_networks_max_dataset_folders", 20))
                    dataset_folders = gr.Dataframe(
                        headers=["Name", "Image Count", "Repeats", "Total Images"],
                        datatype=["str", "number", "number", "number"],
                        label="Dataset folder structure",
                        max_rows=max_dataset_folders,
                        col_count=(4, "fixed"),
                    )

                # Training Parameters
                with gr.Row():
                    metadata_view = gr.JSON(value={}, label="Training parameters")

            # Hidden/internal
            with gr.Row(visible=False):
                info1 = gr.HTML()
                img_file_info = gr.Textbox(label="Generate Info", interactive=False, lines=6)

    open_folder_button.click(fn=lambda p: open_folder(os.path.dirname(p)), inputs=[model_path], outputs=[])
    copy_metadata_button.click(
        fn=copy_metadata_to_all,
        inputs=[module, model, copy_metadata_dir, copy_same_session, copy_no_metadata, cover_image],
        outputs=[save_output],
    )

    def update_editing(enabled):
        """
        Enable/disable components based on "Editing Enabled" status
        """
        updates = [gr.Textbox.update(interactive=enabled)] * 6
        updates.append(gr.Image.update(interactive=enabled))
        updates.append(gr.Slider.update(interactive=enabled))
        updates.append(gr.Button.update(interactive=enabled))
        return updates

    editing_enabled.change(
        fn=update_editing,
        inputs=[editing_enabled],
        outputs=[display_name, author, source, keywords, description, tags, cover_image, rating, save_metadata_button],
    )

    cover_image.change(fn=modules.extras.run_pnginfo, inputs=[cover_image], outputs=[info1, img_file_info, info2])

    try:
        parameters_copypaste.bind_buttons(send_to_buttons, cover_image, img_file_info)
    except:
        pass

    model.change(
        refresh_metadata,
        inputs=[module, model],
        outputs=[
            metadata_view,
            cover_image,
            display_name,
            author,
            source,
            keywords,
            description,
            rating,
            tags,
            model_hash,
            legacy_hash,
            model_path,
            copy_metadata_dir,
            most_frequent_tags,
            dataset_folders,
        ],
    )
    save_metadata_button.click(
        save_metadata,
        inputs=[module, model, cover_image, display_name, author, source, keywords, description, rating, tags],
        outputs=[save_output, model_hash, legacy_hash],
    )