File size: 1,451 Bytes
c766192
 
 
 
 
 
 
6b6756f
c766192
 
 
 
 
 
6b6756f
c766192
 
 
5f9d092
c766192
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f9d092
c766192
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
---
base_model: ProsusAI/finbert
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: FT-ProsusAI-finbert
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# FT-ProsusAI-finbert

This model is a fine-tuned version of [ProsusAI/finbert](https://huggingface.co/ProsusAI/finbert) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3920
- Accuracy: 0.85

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log        | 1.0   | 40   | 0.3980          | 0.825    |
| No log        | 2.0   | 80   | 0.4363          | 0.875    |
| No log        | 3.0   | 120  | 0.3920          | 0.85     |


### Framework versions

- Transformers 4.41.0
- Pytorch 2.3.0
- Datasets 2.19.1
- Tokenizers 0.19.1