Upload Llama-3-1-Varco-8B.ipynb (#5)
Browse files- Upload Llama-3-1-Varco-8B.ipynb (2d5e31ec7bac5dc1b3fc25f77a4cc7acd427f373)
Co-authored-by: Jooho Song <[email protected]>
- Llama-3-1-Varco-8B.ipynb +343 -0
Llama-3-1-Varco-8B.ipynb
ADDED
@@ -0,0 +1,343 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"metadata": {},
|
6 |
+
"source": [
|
7 |
+
"# Deploy Llama-VARCO-8B-Instruct Model from AWS Marketplace \n"
|
8 |
+
]
|
9 |
+
},
|
10 |
+
{
|
11 |
+
"cell_type": "markdown",
|
12 |
+
"metadata": {},
|
13 |
+
"source": [
|
14 |
+
"\n",
|
15 |
+
"\n",
|
16 |
+
"Llama-VARCO-8B-Instruct is a generative model built with Llama, specifically designed to excel in Korean through additional training. The model uses continual pre-training with both Korean and English datasets to enhance its understanding and generation capabilites in Korean, while also maintaining its proficiency in English. It performs supervised fine-tuning (SFT) and direct preference optimization (DPO) in Korean to align with human preferences.\n",
|
17 |
+
"\n",
|
18 |
+
"This sample notebook shows you how to deploy [Llama-VARCO-8B-Instruct](https://aws.amazon.com/marketplace/pp/prodview-pynin2e23lb3e) using Amazon SageMaker.\n",
|
19 |
+
"\n",
|
20 |
+
"> **Note**: This is a reference notebook and it cannot run unless you make changes suggested in the notebook.\n",
|
21 |
+
"\n",
|
22 |
+
"## Pre-requisites:\n",
|
23 |
+
"1. **Note**: This notebook contains elements which render correctly in Jupyter interface. Open this notebook from an Amazon SageMaker Notebook Instance or Amazon SageMaker Studio.\n",
|
24 |
+
"1. Ensure that IAM role used has **AmazonSageMakerFullAccess**\n",
|
25 |
+
"1. To deploy this ML model successfully, ensure that:\n",
|
26 |
+
" 1. Either your IAM role has these three permissions and you have authority to make AWS Marketplace subscriptions in the AWS account used: \n",
|
27 |
+
" 1. **aws-marketplace:ViewSubscriptions**\n",
|
28 |
+
" 1. **aws-marketplace:Unsubscribe**\n",
|
29 |
+
" 1. **aws-marketplace:Subscribe** \n",
|
30 |
+
"\n",
|
31 |
+
"## Contents:\n",
|
32 |
+
"1. [Subscribe to the model package](#1.-Subscribe-to-the-model-package)\n",
|
33 |
+
"2. [Create an endpoint and perform real-time inference](#2.-Create-an-endpoint-and-perform-real-time-inference)\n",
|
34 |
+
"3. [Clean-up](#3.-Clean-up)\n",
|
35 |
+
"\n",
|
36 |
+
" \n",
|
37 |
+
"\n",
|
38 |
+
"## Usage instructions\n",
|
39 |
+
"You can run this notebook one cell at a time (By using Shift+Enter for running a cell)."
|
40 |
+
]
|
41 |
+
},
|
42 |
+
{
|
43 |
+
"cell_type": "markdown",
|
44 |
+
"metadata": {},
|
45 |
+
"source": [
|
46 |
+
"## 1. Subscribe to the model package"
|
47 |
+
]
|
48 |
+
},
|
49 |
+
{
|
50 |
+
"cell_type": "markdown",
|
51 |
+
"metadata": {
|
52 |
+
"tags": []
|
53 |
+
},
|
54 |
+
"source": [
|
55 |
+
"To subscribe to the model package:\n",
|
56 |
+
"1. Open the model package [listing page](https://aws.amazon.com/marketplace/pp/prodview-pynin2e23lb3e)\n",
|
57 |
+
"1. On the AWS Marketplace listing, click on the **Continue to subscribe** button.\n",
|
58 |
+
"1. On the **Subscribe to this software** page, review and click on **\"Accept Offer\"** if you and your organization agrees with EULA, pricing, and support terms. \n",
|
59 |
+
"1. Once you click on **Continue to configuration button** and then choose a **region**, you will see a **Product Arn** displayed. This is the model package ARN that you need to specify while creating a deployable model using Boto3. Copy the ARN corresponding to your region and specify the same in the following cell."
|
60 |
+
]
|
61 |
+
},
|
62 |
+
{
|
63 |
+
"cell_type": "code",
|
64 |
+
"execution_count": null,
|
65 |
+
"metadata": {
|
66 |
+
"tags": []
|
67 |
+
},
|
68 |
+
"outputs": [],
|
69 |
+
"source": [
|
70 |
+
"model_package_arn = \"arn:aws:sagemaker:us-west-2:594846645681:model-package/llama-varco-8b-ist-bedrock-37339dbb44f23f488e24f8671eaa0494\""
|
71 |
+
]
|
72 |
+
},
|
73 |
+
{
|
74 |
+
"cell_type": "code",
|
75 |
+
"execution_count": null,
|
76 |
+
"metadata": {
|
77 |
+
"tags": []
|
78 |
+
},
|
79 |
+
"outputs": [],
|
80 |
+
"source": [
|
81 |
+
"import base64\n",
|
82 |
+
"import json\n",
|
83 |
+
"import uuid\n",
|
84 |
+
"from sagemaker import ModelPackage\n",
|
85 |
+
"import sagemaker as sage\n",
|
86 |
+
"from sagemaker import get_execution_role\n",
|
87 |
+
"from sagemaker import ModelPackage\n",
|
88 |
+
"import boto3\n",
|
89 |
+
"from IPython.display import Image\n",
|
90 |
+
"from PIL import Image as ImageEdit\n",
|
91 |
+
"import numpy as np\n",
|
92 |
+
"import io"
|
93 |
+
]
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"cell_type": "code",
|
97 |
+
"execution_count": null,
|
98 |
+
"metadata": {
|
99 |
+
"tags": []
|
100 |
+
},
|
101 |
+
"outputs": [],
|
102 |
+
"source": [
|
103 |
+
"role = get_execution_role()\n",
|
104 |
+
"\n",
|
105 |
+
"sagemaker_session = sage.Session()\n",
|
106 |
+
"\n",
|
107 |
+
"bucket = sagemaker_session.default_bucket()\n",
|
108 |
+
"runtime = boto3.client(\"runtime.sagemaker\")"
|
109 |
+
]
|
110 |
+
},
|
111 |
+
{
|
112 |
+
"cell_type": "markdown",
|
113 |
+
"metadata": {},
|
114 |
+
"source": [
|
115 |
+
"## 2. Create an endpoint and perform real-time inference"
|
116 |
+
]
|
117 |
+
},
|
118 |
+
{
|
119 |
+
"cell_type": "markdown",
|
120 |
+
"metadata": {},
|
121 |
+
"source": [
|
122 |
+
"If you want to understand how real-time inference with Amazon SageMaker works, see [Documentation](https://docs.aws.amazon.com/sagemaker/latest/dg/how-it-works-hosting.html)."
|
123 |
+
]
|
124 |
+
},
|
125 |
+
{
|
126 |
+
"cell_type": "code",
|
127 |
+
"execution_count": null,
|
128 |
+
"metadata": {
|
129 |
+
"tags": []
|
130 |
+
},
|
131 |
+
"outputs": [],
|
132 |
+
"source": [
|
133 |
+
"model_name = \"Llama-VARCO-8B-Instruct\"\n",
|
134 |
+
"\n",
|
135 |
+
"content_type = \"application/json\"\n",
|
136 |
+
"\n",
|
137 |
+
"real_time_inference_instance_type = (\n",
|
138 |
+
" \"ml.g5.12xlarge\"\n",
|
139 |
+
")\n",
|
140 |
+
"batch_transform_inference_instance_type = (\n",
|
141 |
+
" \"ml.g4dn.12xlarge\"\n",
|
142 |
+
")"
|
143 |
+
]
|
144 |
+
},
|
145 |
+
{
|
146 |
+
"cell_type": "markdown",
|
147 |
+
"metadata": {},
|
148 |
+
"source": [
|
149 |
+
"### A.Create an endpoint"
|
150 |
+
]
|
151 |
+
},
|
152 |
+
{
|
153 |
+
"cell_type": "code",
|
154 |
+
"execution_count": null,
|
155 |
+
"metadata": {
|
156 |
+
"tags": []
|
157 |
+
},
|
158 |
+
"outputs": [],
|
159 |
+
"source": [
|
160 |
+
"# create a deployable model from the model package.\n",
|
161 |
+
"model = ModelPackage(\n",
|
162 |
+
" role=role, model_package_arn=model_package_arn, sagemaker_session=sagemaker_session\n",
|
163 |
+
")\n",
|
164 |
+
"\n",
|
165 |
+
"# Deploy the model\n",
|
166 |
+
"predictor = model.deploy(1, real_time_inference_instance_type, endpoint_name=model_name)"
|
167 |
+
]
|
168 |
+
},
|
169 |
+
{
|
170 |
+
"cell_type": "markdown",
|
171 |
+
"metadata": {},
|
172 |
+
"source": [
|
173 |
+
"Once endpoint has been created, you would be able to perform real-time inference."
|
174 |
+
]
|
175 |
+
},
|
176 |
+
{
|
177 |
+
"cell_type": "markdown",
|
178 |
+
"metadata": {
|
179 |
+
"tags": []
|
180 |
+
},
|
181 |
+
"source": [
|
182 |
+
"### B.Create input payload"
|
183 |
+
]
|
184 |
+
},
|
185 |
+
{
|
186 |
+
"cell_type": "code",
|
187 |
+
"execution_count": null,
|
188 |
+
"metadata": {
|
189 |
+
"tags": []
|
190 |
+
},
|
191 |
+
"outputs": [],
|
192 |
+
"source": [
|
193 |
+
"input = {\n",
|
194 |
+
" \"messages\": [\n",
|
195 |
+
" {\n",
|
196 |
+
" \"role\":\"user\",\n",
|
197 |
+
" \"content\":\"안녕 넌 누구야?\"\n",
|
198 |
+
" }\n",
|
199 |
+
" ]\n",
|
200 |
+
"}"
|
201 |
+
]
|
202 |
+
},
|
203 |
+
{
|
204 |
+
"cell_type": "markdown",
|
205 |
+
"metadata": {},
|
206 |
+
"source": [
|
207 |
+
"### C. Perform real-time inference"
|
208 |
+
]
|
209 |
+
},
|
210 |
+
{
|
211 |
+
"cell_type": "markdown",
|
212 |
+
"metadata": {},
|
213 |
+
"source": [
|
214 |
+
"##### C-1. Stream Inference Example"
|
215 |
+
]
|
216 |
+
},
|
217 |
+
{
|
218 |
+
"cell_type": "code",
|
219 |
+
"execution_count": null,
|
220 |
+
"metadata": {
|
221 |
+
"tags": []
|
222 |
+
},
|
223 |
+
"outputs": [],
|
224 |
+
"source": [
|
225 |
+
"class VarcoInferenceStream():\n",
|
226 |
+
" def __init__(self, sagemaker_runtime, endpoint_name):\n",
|
227 |
+
" self.sagemaker_runtime = sagemaker_runtime\n",
|
228 |
+
" self.endpoint_name = endpoint_name\n",
|
229 |
+
"\n",
|
230 |
+
" def stream_inference(self, request_body):\n",
|
231 |
+
" # Gets a streaming inference response\n",
|
232 |
+
" # from the specified model endpoint:\n",
|
233 |
+
" response = self.sagemaker_runtime\\\n",
|
234 |
+
" .invoke_endpoint_with_response_stream(\n",
|
235 |
+
" EndpointName=self.endpoint_name,\n",
|
236 |
+
" Body=json.dumps(request_body),\n",
|
237 |
+
" ContentType=\"application/json\"\n",
|
238 |
+
" )\n",
|
239 |
+
" # Gets the EventStream object returned by the SDK:\n",
|
240 |
+
" for body in response[\"Body\"]:\n",
|
241 |
+
" raw = body['PayloadPart']['Bytes']\n",
|
242 |
+
" yield raw.decode()\n",
|
243 |
+
"\n",
|
244 |
+
"\n",
|
245 |
+
"sm_runtime = boto3.client(\"sagemaker-runtime\")\n",
|
246 |
+
"varco_inference_stream = VarcoInferenceStream(sm_runtime, model_name)\n",
|
247 |
+
"stream = varco_inference_stream.stream_inference(input)\n",
|
248 |
+
"for part in stream:\n",
|
249 |
+
" print(part, end='')"
|
250 |
+
]
|
251 |
+
},
|
252 |
+
{
|
253 |
+
"cell_type": "markdown",
|
254 |
+
"metadata": {
|
255 |
+
"tags": []
|
256 |
+
},
|
257 |
+
"source": [
|
258 |
+
"## 3. Clean-up"
|
259 |
+
]
|
260 |
+
},
|
261 |
+
{
|
262 |
+
"cell_type": "markdown",
|
263 |
+
"metadata": {},
|
264 |
+
"source": [
|
265 |
+
"Now that you have successfully performed a real-time inference, you do not need the endpoint any more. You can terminate the endpoint to avoid being charged."
|
266 |
+
]
|
267 |
+
},
|
268 |
+
{
|
269 |
+
"cell_type": "markdown",
|
270 |
+
"metadata": {},
|
271 |
+
"source": [
|
272 |
+
"### A. Delete the endpoint"
|
273 |
+
]
|
274 |
+
},
|
275 |
+
{
|
276 |
+
"cell_type": "code",
|
277 |
+
"execution_count": null,
|
278 |
+
"metadata": {},
|
279 |
+
"outputs": [],
|
280 |
+
"source": [
|
281 |
+
"model.sagemaker_session.delete_endpoint(model_name)\n",
|
282 |
+
"model.sagemaker_session.delete_endpoint_config(model_name)"
|
283 |
+
]
|
284 |
+
},
|
285 |
+
{
|
286 |
+
"cell_type": "markdown",
|
287 |
+
"metadata": {},
|
288 |
+
"source": [
|
289 |
+
"### B. Delete the model"
|
290 |
+
]
|
291 |
+
},
|
292 |
+
{
|
293 |
+
"cell_type": "code",
|
294 |
+
"execution_count": null,
|
295 |
+
"metadata": {},
|
296 |
+
"outputs": [],
|
297 |
+
"source": [
|
298 |
+
"model.delete_model()"
|
299 |
+
]
|
300 |
+
},
|
301 |
+
{
|
302 |
+
"cell_type": "markdown",
|
303 |
+
"metadata": {},
|
304 |
+
"source": [
|
305 |
+
"### C. Unsubscribe to the listing (optional)"
|
306 |
+
]
|
307 |
+
},
|
308 |
+
{
|
309 |
+
"cell_type": "markdown",
|
310 |
+
"metadata": {},
|
311 |
+
"source": [
|
312 |
+
"If you would like to unsubscribe to the model package, follow these steps. Before you cancel the subscription, ensure that you do not have any [deployable model](https://console.aws.amazon.com/sagemaker/home#/models) created from the model package or using the algorithm. Note - You can find this information by looking at the container name associated with the model. \n",
|
313 |
+
"\n",
|
314 |
+
"**Steps to unsubscribe to product from AWS Marketplace**:\n",
|
315 |
+
"1. Navigate to __Machine Learning__ tab on [__Your Software subscriptions page__](https://aws.amazon.com/marketplace/ai/library?productType=ml&ref_=mlmp_gitdemo_indust)\n",
|
316 |
+
"2. Locate the listing that you want to cancel the subscription for, and then choose __Cancel Subscription__ to cancel the subscription.\n",
|
317 |
+
"\n"
|
318 |
+
]
|
319 |
+
}
|
320 |
+
],
|
321 |
+
"metadata": {
|
322 |
+
"instance_type": "ml.t3.medium",
|
323 |
+
"kernelspec": {
|
324 |
+
"display_name": "conda_pytorch_p310",
|
325 |
+
"language": "python",
|
326 |
+
"name": "conda_pytorch_p310"
|
327 |
+
},
|
328 |
+
"language_info": {
|
329 |
+
"codemirror_mode": {
|
330 |
+
"name": "ipython",
|
331 |
+
"version": 3
|
332 |
+
},
|
333 |
+
"file_extension": ".py",
|
334 |
+
"mimetype": "text/x-python",
|
335 |
+
"name": "python",
|
336 |
+
"nbconvert_exporter": "python",
|
337 |
+
"pygments_lexer": "ipython3",
|
338 |
+
"version": "3.10.14"
|
339 |
+
}
|
340 |
+
},
|
341 |
+
"nbformat": 4,
|
342 |
+
"nbformat_minor": 4
|
343 |
+
}
|