JiHyeSung commited on
Commit
30a6cd0
·
verified ·
1 Parent(s): 2637e65

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +7 -8
README.md CHANGED
@@ -1,6 +1,7 @@
1
  ---
2
  language:
3
  - en
 
4
  license: llama3.1
5
  tags:
6
  - llama-3.1
@@ -10,11 +11,11 @@ base_model:
10
  - meta-llama/Meta-Llama-3.1-8B-Instruct
11
  ---
12
 
13
- ## Llama-3.1-Varco-8B-Instruct
14
 
15
  ### About the Model
16
 
17
- **Llama-3.1-Varco-8B-Instruct** is a *generative model* based on Meta-Llama-3.1-8B, specifically designed to excel in Korean through additional training. The model uses continual pre-training with both Korean and English datasets to enhance its understanding and generation capabilites in Korean, while also maintaining its proficiency in English. It performs supervised fine-tuning (SFT) and direct preference optimization (DPO) in Korean to align with human preferences.
18
 
19
  - **Developed by:** NC Research, Language Model Team
20
  - **Languages (NLP):** Korean, English
@@ -32,11 +33,11 @@ We recommend to use transformers v4.43.0 or later, as advised for Llama-3.1.
32
  import torch
33
 
34
  model = AutoModelForCausalLM.from_pretrained(
35
- "NCSOFT/Llama-3.1-Varco-8B-Instruct",
36
  torch_dtype=torch.bfloat16,
37
  device_map="auto"
38
  )
39
- tokenizer = AutoTokenizer.from_pretrained("NCSOFT/Llama-3.1-Varco-8B-Instruct")
40
 
41
  messages = [
42
  {"role": "system", "content": "You are a helpful assistant Varco. Respond accurately and diligently according to the user's instructions."},
@@ -67,10 +68,8 @@ We used the [LogicKor](https://github.com/instructkr/LogicKor) code to measure p
67
 
68
  | Model | Math | Reasoning | Writing | Coding | Understanding | Grammer | Single turn | Multi turn | Overall |
69
  |--------------|--------|-------------|-----------|----------|-----------------|-----------|---------------|--------------|-----------|
70
- | [Llama-3.1-Varco-8B-Instruct](https://huggingface.co/NCSOFT/Llama-3.1-Varco-8B-Instruct)| 6.71 / 8.57 | 8.86 / 8.29 | 9.86 / 9.71 | 8.86 / 9.29 | 9.29 / 10.0 | 8.57 / 7.86 | 8.69 | 8.95 | 8.82 |
71
  | [EXAONE-3.0-7.8B-Instruct](https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct)| 6.86 / 7.71 | 8.57 / 6.71 | 10.0 / 9.29 | 9.43 / 10.0 | 10.0 / 10.0 | 9.57 / 5.14 | 9.07 | 8.14 | 8.61 |
72
  | [Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct)| 4.29 / 4.86 | 6.43 / 6.57 | 6.71 / 5.14 | 6.57 / 6.00 | 4.29 / 4.14 | 6.00 / 4.00 | 5.71 | 5.12 | 5.42 |
73
  | [Gemma-2-9B-Instruct](https://huggingface.co/google/gemma-2-9b-it)| 6.14 / 5.86 | 9.29 / 9.0 | 9.29 / 8.57 | 9.29 / 9.14 | 8.43 / 8.43 | 7.86 / 4.43 | 8.38 | 7.57 | 7.98
74
- | [Qwen2-7B-Instruct](https://huggingface.co/Qwen/Qwen2-7B-Instruct)| 5.57 / 4.86 | 7.71 / 6.43 | 7.43 / 7.00 | 7.43 / 8.00 | 7.86 / 8.71 | 6.29 / 3.29 | 7.05 | 6.38 | 6.71 |
75
-
76
-
 
1
  ---
2
  language:
3
  - en
4
+ - ko
5
  license: llama3.1
6
  tags:
7
  - llama-3.1
 
11
  - meta-llama/Meta-Llama-3.1-8B-Instruct
12
  ---
13
 
14
+ ## Llama-VARCO-8B-Instruct
15
 
16
  ### About the Model
17
 
18
+ **Llama-VARCO-8B-Instruct** is a *generative model* based on Meta-Llama-3.1-8B, specifically designed to excel in Korean through additional training. The model uses continual pre-training with both Korean and English datasets to enhance its understanding and generation capabilites in Korean, while also maintaining its proficiency in English. It performs supervised fine-tuning (SFT) and direct preference optimization (DPO) in Korean to align with human preferences.
19
 
20
  - **Developed by:** NC Research, Language Model Team
21
  - **Languages (NLP):** Korean, English
 
33
  import torch
34
 
35
  model = AutoModelForCausalLM.from_pretrained(
36
+ "NCSOFT/Llama-VARCO-8B-Instruct",
37
  torch_dtype=torch.bfloat16,
38
  device_map="auto"
39
  )
40
+ tokenizer = AutoTokenizer.from_pretrained("NCSOFT/Llama-VARCO-8B-Instruct")
41
 
42
  messages = [
43
  {"role": "system", "content": "You are a helpful assistant Varco. Respond accurately and diligently according to the user's instructions."},
 
68
 
69
  | Model | Math | Reasoning | Writing | Coding | Understanding | Grammer | Single turn | Multi turn | Overall |
70
  |--------------|--------|-------------|-----------|----------|-----------------|-----------|---------------|--------------|-----------|
71
+ | [Llama-VARCO-8B-Instruct](https://huggingface.co/NCSOFT/Llama-VARCO-8B-Instruct)| 6.71 / 8.57 | 8.86 / 8.29 | 9.86 / 9.71 | 8.86 / 9.29 | 9.29 / 10.0 | 8.57 / 7.86 | 8.69 | 8.95 | 8.82 |
72
  | [EXAONE-3.0-7.8B-Instruct](https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct)| 6.86 / 7.71 | 8.57 / 6.71 | 10.0 / 9.29 | 9.43 / 10.0 | 10.0 / 10.0 | 9.57 / 5.14 | 9.07 | 8.14 | 8.61 |
73
  | [Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct)| 4.29 / 4.86 | 6.43 / 6.57 | 6.71 / 5.14 | 6.57 / 6.00 | 4.29 / 4.14 | 6.00 / 4.00 | 5.71 | 5.12 | 5.42 |
74
  | [Gemma-2-9B-Instruct](https://huggingface.co/google/gemma-2-9b-it)| 6.14 / 5.86 | 9.29 / 9.0 | 9.29 / 8.57 | 9.29 / 9.14 | 8.43 / 8.43 | 7.86 / 4.43 | 8.38 | 7.57 | 7.98
75
+ | [Qwen2-7B-Instruct](https://huggingface.co/Qwen/Qwen2-7B-Instruct)| 5.57 / 4.86 | 7.71 / 6.43 | 7.43 / 7.00 | 7.43 / 8.00 | 7.86 / 8.71 | 6.29 / 3.29 | 7.05 | 6.38 | 6.71 |