language:
- ko
license: apache-2.0
library_name: adapter-transformers
base_model:
- meta-llama/Meta-Llama-3.1-8B-Instruct
datasets:
- MarkrAI/KOpen-HQ-Hermes-2.5-60K
pipeline_tag: text-generation
model-index:
- name: naps-llama-3_1-8b-instruct-v0.4
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 73.44
name: strict accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=NAPS-ai/naps-llama-3_1-8b-instruct-v0.4
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 27.83
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=NAPS-ai/naps-llama-3_1-8b-instruct-v0.4
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 17.22
name: exact match
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=NAPS-ai/naps-llama-3_1-8b-instruct-v0.4
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 3.91
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=NAPS-ai/naps-llama-3_1-8b-instruct-v0.4
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 13.96
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=NAPS-ai/naps-llama-3_1-8b-instruct-v0.4
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 27.5
name: accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=NAPS-ai/naps-llama-3_1-8b-instruct-v0.4
name: Open LLM Leaderboard
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.
unsloth๋ฅผ ์ฌ์ฉํ์ฌ meta-llama/Meta-Llama-3.1-8B-Instruct ๋ชจ๋ธ์ LORA ํ์ธํ๋์ ์๋ฃํ์ต๋๋ค.
MarkrAI/KOpen-HQ-Hermes-2.5-60k ๋ฐ์ดํฐ๋ฅผ ํ์ต์์ผฐ์ต๋๋ค.
How to use
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("NAPS-ai/naps-llama-3.1-8b-instruct-v0.4")
model = AutoModelForCausalLM.from_pretrained("NAPS-ai/naps-llama-3.1-8b-instruct-v0.4")
Chatbot
from transformers import AutoTokenizer, AutoModelForCausalLM
import transformers
import torch
tokenizer = AutoTokenizer.from_pretrained("NAPS-ai/naps-llama-3.1-8b-instruct-v0.4")
model = AutoModelForCausalLM.from_pretrained("NAPS-ai/naps-llama-3.1-8b-instruct-v0.4")
pipeline = transformers.pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
model_kwargs={"torch_dtype": torch.bfloat16},
device=0,
)
def answering(question):
messages = [
{"role": "system", "content": "๋น์ ์ ํญ์ ์น์ ํ๊ฒ ๋๋ตํ๋ ์๋ด์์
๋๋ค."},
{"role": "user", "content": question},
]
outputs = pipeline(
messages,
max_new_tokens=1024,
pad_token_id = pipeline.tokenizer.eos_token_id
)
return outputs[0]["generated_text"][2]['content']
while True:
question = input("์ง๋ฌธ์ ์
๋ ฅํ์ธ์ : ")
if question == "์ข
๋ฃ":
print("ํ๋ก๊ทธ๋จ ์ข
๋ฃ")
break
answer = answering(question)
print(f"AI์ ๋ต๋ณ: {answer}")
Contact : [email protected]
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 27.31 |
IFEval (0-Shot) | 73.44 |
BBH (3-Shot) | 27.83 |
MATH Lvl 5 (4-Shot) | 17.22 |
GPQA (0-shot) | 3.91 |
MuSR (0-shot) | 13.96 |
MMLU-PRO (5-shot) | 27.50 |