omarelshehy commited on
Commit
39fa12e
1 Parent(s): 74e01dc

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +62 -1
README.md CHANGED
@@ -1,6 +1,67 @@
1
  ---
2
  license: apache-2.0
 
 
 
 
 
 
 
 
 
 
 
3
  ---
4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
  base model name : Omartificial-Intelligence-Space/Arabic-Triplet-Matryoshka-V2
6
- dataset : Arabic-mmarco-triplet ( 1 million random sample)
 
1
  ---
2
  license: apache-2.0
3
+ language:
4
+ - ar
5
+ pipeline_tag: text-classification
6
+ library_name: transformers
7
+ base_model:
8
+ - Omartificial-Intelligence-Space/Arabic-Triplet-Matryoshka-V2
9
+ tags:
10
+ - reranking
11
+ - sentence-transformers
12
+ datasets:
13
+ - unicamp-dl/mmarco
14
  ---
15
 
16
+ # GATE-Reranker-V1 🚀✨
17
+
18
+ **NAMAA-space** releases **Rerankerv1**, a high-performance model fine-tuned on [unicamp-dl/mmarco](https://huggingface.co/datasets/unicamp-dl/mmarco) to elevate Arabic document retrieval and ranking to new heights! 📚🇸🇦
19
+
20
+ This model is designed to **improve search relevance** of **arabic** documents by accurately ranking documents based on their contextual fit for a given query.
21
+
22
+ ## Key Features 🔑
23
+
24
+ - **Optimized for Arabic**: Built on the highly performant [Omartificial-Intelligence-Space/Arabic-Triplet-Matryoshka-V2](https://huggingface.co/Omartificial-Intelligence-Space/Arabic-Triplet-Matryoshka-V2) with exclusivly rich Arabic data.
25
+ - **Advanced Document Ranking**: Ranks results with precision, perfect for search engines, recommendation systems, and question-answering applications.
26
+ - **State-of-the-Art Performance**: Achieves excellent performance compared to famous rerankers(See [Evaluation](https://huggingface.co/NAMAA-Space/GATE-Reranker-V1#evaluation)), ensuring reliable relevance and precision.
27
+
28
+ ## Example Use Cases 💼
29
+
30
+ - **Retrieval Augmented Generation**: Improve search result relevance for Arabic content.
31
+ - **Content Recommendation**: Deliver top-tier Arabic content suggestions.
32
+ - **Question Answering**: Boost answer retrieval quality in Arabic-focused systems.
33
+
34
+ ## Usage
35
+
36
+ # Within sentence-transformers
37
+ The usage becomes easier when you have [SentenceTransformers](https://www.sbert.net/) installed. Then, you can use the pre-trained models like this:
38
+
39
+ ```python
40
+ from sentence_transformers import CrossEncoder
41
+ model = CrossEncoder('NAMAA-Space/Rerankerv1', max_length=512)
42
+
43
+ Query = 'كيف يمكن استخدام التعلم العميق في معالجة الصور الطبية؟'
44
+ Paragraph1 = 'التعلم العميق يساعد في تحليل الصور الطبية وتشخيص الأمراض'
45
+ Paragraph2 = 'الذكاء الاصطناعي يستخدم في تحسين الإنتاجية في الصناعات'
46
+
47
+ scores = model.predict([(Query, Paragraph1), (Query, Paragraph2)])
48
+ ```
49
+
50
+ ## Evaluation
51
+
52
+ We evaluate our model on two different datasets using the metrics **MAP**, **MRR** and **NDCG@10**:
53
+
54
+ The purpose of this evaluation is to highlight the performance of our model with regards to: Relevant/Irrelevant labels and positive/multiple negatives documents:
55
+
56
+ Dataset 1: [NAMAA-Space/Ar-Reranking-Eval](https://huggingface.co/datasets/NAMAA-Space/Ar-Reranking-Eval)
57
+
58
+
59
+
60
+ Dataset 2: [NAMAA-Space/Arabic-Reranking-Triplet-5-Eval](https://huggingface.co/datasets/NAMAA-Space/Arabic-Reranking-Triplet-5-Eval)
61
+
62
+
63
+
64
+ As seen, The model performs extremly well in comparison to other famous rerankers.
65
+
66
  base model name : Omartificial-Intelligence-Space/Arabic-Triplet-Matryoshka-V2
67
+ dataset : Arabic-mmarco-triplet ( 1 million random sample)