|
|
|
""" |
|
# ============================== |
|
# flowlib.py |
|
# library for optical flow processing |
|
# Author: Ruoteng Li |
|
# Date: 6th Aug 2016 |
|
# ============================== |
|
""" |
|
|
|
import numpy as np |
|
from PIL import Image |
|
import io |
|
|
|
UNKNOWN_FLOW_THRESH = 1e7 |
|
SMALLFLOW = 0.0 |
|
LARGEFLOW = 1e8 |
|
|
|
""" |
|
============= |
|
Flow Section |
|
============= |
|
""" |
|
|
|
def write_flow(flow, filename): |
|
""" |
|
write optical flow in Middlebury .flo format |
|
:param flow: optical flow map |
|
:param filename: optical flow file path to be saved |
|
:return: None |
|
""" |
|
f = open(filename, 'wb') |
|
magic = np.array([202021.25], dtype=np.float32) |
|
(height, width) = flow.shape[0:2] |
|
w = np.array([width], dtype=np.int32) |
|
h = np.array([height], dtype=np.int32) |
|
magic.tofile(f) |
|
w.tofile(f) |
|
h.tofile(f) |
|
flow.tofile(f) |
|
f.close() |
|
|
|
|
|
def save_flow_image(flow, image_file): |
|
""" |
|
save flow visualization into image file |
|
:param flow: optical flow data |
|
:param flow_fil |
|
:return: None |
|
""" |
|
flow_img = flow_to_image(flow) |
|
img_out = Image.fromarray(flow_img) |
|
img_out.save(image_file) |
|
|
|
def segment_flow(flow): |
|
h = flow.shape[0] |
|
w = flow.shape[1] |
|
u = flow[:, :, 0] |
|
v = flow[:, :, 1] |
|
|
|
idx = ((abs(u) > LARGEFLOW) | (abs(v) > LARGEFLOW)) |
|
idx2 = (abs(u) == SMALLFLOW) |
|
class0 = (v == 0) & (u == 0) |
|
u[idx2] = 0.00001 |
|
tan_value = v / u |
|
|
|
class1 = (tan_value < 1) & (tan_value >= 0) & (u > 0) & (v >= 0) |
|
class2 = (tan_value >= 1) & (u >= 0) & (v >= 0) |
|
class3 = (tan_value < -1) & (u <= 0) & (v >= 0) |
|
class4 = (tan_value < 0) & (tan_value >= -1) & (u < 0) & (v >= 0) |
|
class8 = (tan_value >= -1) & (tan_value < 0) & (u > 0) & (v <= 0) |
|
class7 = (tan_value < -1) & (u >= 0) & (v <= 0) |
|
class6 = (tan_value >= 1) & (u <= 0) & (v <= 0) |
|
class5 = (tan_value >= 0) & (tan_value < 1) & (u < 0) & (v <= 0) |
|
|
|
seg = np.zeros((h, w)) |
|
|
|
seg[class1] = 1 |
|
seg[class2] = 2 |
|
seg[class3] = 3 |
|
seg[class4] = 4 |
|
seg[class5] = 5 |
|
seg[class6] = 6 |
|
seg[class7] = 7 |
|
seg[class8] = 8 |
|
seg[class0] = 0 |
|
seg[idx] = 0 |
|
|
|
return seg |
|
|
|
def flow_to_image(flow): |
|
""" |
|
Convert flow into middlebury color code image |
|
:param flow: optical flow map |
|
:return: optical flow image in middlebury color |
|
""" |
|
u = flow[:, :, 0] |
|
v = flow[:, :, 1] |
|
|
|
maxu = -999. |
|
maxv = -999. |
|
minu = 999. |
|
minv = 999. |
|
|
|
idxUnknow = (abs(u) > UNKNOWN_FLOW_THRESH) | (abs(v) > UNKNOWN_FLOW_THRESH) |
|
u[idxUnknow] = 0 |
|
v[idxUnknow] = 0 |
|
|
|
maxu = max(maxu, np.max(u)) |
|
minu = min(minu, np.min(u)) |
|
|
|
maxv = max(maxv, np.max(v)) |
|
minv = min(minv, np.min(v)) |
|
|
|
rad = np.sqrt(u ** 2 + v ** 2) |
|
maxrad = max(5, np.max(rad)) |
|
|
|
|
|
u = u/(maxrad + np.finfo(float).eps) |
|
v = v/(maxrad + np.finfo(float).eps) |
|
|
|
img = compute_color(u, v) |
|
|
|
idx = np.repeat(idxUnknow[:, :, np.newaxis], 3, axis=2) |
|
img[idx] = 0 |
|
|
|
return np.uint8(img) |
|
|
|
def disp_to_flowfile(disp, filename): |
|
""" |
|
Read KITTI disparity file in png format |
|
:param disp: disparity matrix |
|
:param filename: the flow file name to save |
|
:return: None |
|
""" |
|
f = open(filename, 'wb') |
|
magic = np.array([202021.25], dtype=np.float32) |
|
(height, width) = disp.shape[0:2] |
|
w = np.array([width], dtype=np.int32) |
|
h = np.array([height], dtype=np.int32) |
|
empty_map = np.zeros((height, width), dtype=np.float32) |
|
data = np.dstack((disp, empty_map)) |
|
magic.tofile(f) |
|
w.tofile(f) |
|
h.tofile(f) |
|
data.tofile(f) |
|
f.close() |
|
|
|
def compute_color(u, v): |
|
""" |
|
compute optical flow color map |
|
:param u: optical flow horizontal map |
|
:param v: optical flow vertical map |
|
:return: optical flow in color code |
|
""" |
|
[h, w] = u.shape |
|
img = np.zeros([h, w, 3]) |
|
nanIdx = np.isnan(u) | np.isnan(v) |
|
u[nanIdx] = 0 |
|
v[nanIdx] = 0 |
|
|
|
colorwheel = make_color_wheel() |
|
ncols = np.size(colorwheel, 0) |
|
|
|
rad = np.sqrt(u**2+v**2) |
|
|
|
a = np.arctan2(-v, -u) / np.pi |
|
|
|
fk = (a+1) / 2 * (ncols - 1) + 1 |
|
|
|
k0 = np.floor(fk).astype(int) |
|
|
|
k1 = k0 + 1 |
|
k1[k1 == ncols+1] = 1 |
|
f = fk - k0 |
|
|
|
for i in range(0, np.size(colorwheel,1)): |
|
tmp = colorwheel[:, i] |
|
col0 = tmp[k0-1] / 255 |
|
col1 = tmp[k1-1] / 255 |
|
col = (1-f) * col0 + f * col1 |
|
|
|
idx = rad <= 1 |
|
col[idx] = 1-rad[idx]*(1-col[idx]) |
|
notidx = np.logical_not(idx) |
|
|
|
col[notidx] *= 0.75 |
|
img[:, :, i] = np.uint8(np.floor(255 * col*(1-nanIdx))) |
|
|
|
return img |
|
|
|
|
|
def make_color_wheel(): |
|
""" |
|
Generate color wheel according Middlebury color code |
|
:return: Color wheel |
|
""" |
|
RY = 15 |
|
YG = 6 |
|
GC = 4 |
|
CB = 11 |
|
BM = 13 |
|
MR = 6 |
|
|
|
ncols = RY + YG + GC + CB + BM + MR |
|
|
|
colorwheel = np.zeros([ncols, 3]) |
|
|
|
col = 0 |
|
|
|
|
|
colorwheel[0:RY, 0] = 255 |
|
colorwheel[0:RY, 1] = np.transpose(np.floor(255*np.arange(0, RY) / RY)) |
|
col += RY |
|
|
|
|
|
colorwheel[col:col+YG, 0] = 255 - np.transpose(np.floor(255*np.arange(0, YG) / YG)) |
|
colorwheel[col:col+YG, 1] = 255 |
|
col += YG |
|
|
|
|
|
colorwheel[col:col+GC, 1] = 255 |
|
colorwheel[col:col+GC, 2] = np.transpose(np.floor(255*np.arange(0, GC) / GC)) |
|
col += GC |
|
|
|
|
|
colorwheel[col:col+CB, 1] = 255 - np.transpose(np.floor(255*np.arange(0, CB) / CB)) |
|
colorwheel[col:col+CB, 2] = 255 |
|
col += CB |
|
|
|
|
|
colorwheel[col:col+BM, 2] = 255 |
|
colorwheel[col:col+BM, 0] = np.transpose(np.floor(255*np.arange(0, BM) / BM)) |
|
col += + BM |
|
|
|
|
|
colorwheel[col:col+MR, 2] = 255 - np.transpose(np.floor(255 * np.arange(0, MR) / MR)) |
|
colorwheel[col:col+MR, 0] = 255 |
|
|
|
return colorwheel |
|
|
|
|
|
def read_flo_file(filename, memcached=False): |
|
""" |
|
Read from Middlebury .flo file |
|
:param flow_file: name of the flow file |
|
:return: optical flow data in matrix |
|
""" |
|
if memcached: |
|
filename = io.BytesIO(filename) |
|
f = open(filename, 'rb') |
|
magic = np.fromfile(f, np.float32, count=1)[0] |
|
data2d = None |
|
|
|
if 202021.25 != magic: |
|
print('Magic number incorrect. Invalid .flo file') |
|
else: |
|
w = np.fromfile(f, np.int32, count=1)[0] |
|
h = np.fromfile(f, np.int32, count=1)[0] |
|
data2d = np.fromfile(f, np.float32, count=2 * w * h) |
|
|
|
data2d = np.resize(data2d, (h, w, 2)) |
|
f.close() |
|
return data2d |
|
|
|
|
|
|
|
def resample(img, sz): |
|
""" |
|
img: flow map to be resampled |
|
sz: new flow map size. Must be [height,weight] |
|
""" |
|
original_image_size = img.shape |
|
in_height = img.shape[0] |
|
in_width = img.shape[1] |
|
out_height = sz[0] |
|
out_width = sz[1] |
|
out_flow = np.zeros((out_height, out_width, 2)) |
|
|
|
height_scale = float(in_height) / float(out_height) |
|
width_scale = float(in_width) / float(out_width) |
|
|
|
[x,y] = np.meshgrid(range(out_width), range(out_height)) |
|
xx = x * width_scale |
|
yy = y * height_scale |
|
x0 = np.floor(xx).astype(np.int32) |
|
x1 = x0 + 1 |
|
y0 = np.floor(yy).astype(np.int32) |
|
y1 = y0 + 1 |
|
|
|
x0 = np.clip(x0,0,in_width-1) |
|
x1 = np.clip(x1,0,in_width-1) |
|
y0 = np.clip(y0,0,in_height-1) |
|
y1 = np.clip(y1,0,in_height-1) |
|
|
|
Ia = img[y0,x0,:] |
|
Ib = img[y1,x0,:] |
|
Ic = img[y0,x1,:] |
|
Id = img[y1,x1,:] |
|
|
|
wa = (y1-yy) * (x1-xx) |
|
wb = (yy-y0) * (x1-xx) |
|
wc = (y1-yy) * (xx-x0) |
|
wd = (yy-y0) * (xx-x0) |
|
out_flow[:,:,0] = (Ia[:,:,0]*wa + Ib[:,:,0]*wb + Ic[:,:,0]*wc + Id[:,:,0]*wd) * out_width / in_width |
|
out_flow[:,:,1] = (Ia[:,:,1]*wa + Ib[:,:,1]*wb + Ic[:,:,1]*wc + Id[:,:,1]*wd) * out_height / in_height |
|
|
|
return out_flow |
|
|