upload model
Browse files- README.md +82 -3
- README_zh-CN.md +70 -0
- added_tokens.json +5 -0
- config.json +28 -0
- generation_config.json +12 -0
- merges.txt +0 -0
- model.safetensors +3 -0
- special_tokens_map.json +20 -0
- tokenizer.json +0 -0
- tokenizer_config.json +43 -0
- vocab.json +0 -0
README.md
CHANGED
@@ -1,3 +1,82 @@
|
|
1 |
-
---
|
2 |
-
license: gpl-3.0
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: gpl-3.0
|
3 |
+
datasets:
|
4 |
+
- wmt/wmt19
|
5 |
+
language:
|
6 |
+
- en
|
7 |
+
- zh
|
8 |
+
base_model: Mxode/NanoLM-0.5B-Base
|
9 |
+
pipeline_tag: translation
|
10 |
+
tags:
|
11 |
+
- text-generation-inference
|
12 |
+
---
|
13 |
+
# NanoTranslator-immersive_translate-0.5B
|
14 |
+
|
15 |
+
English | [简体中文](README_zh-CN.md)
|
16 |
+
|
17 |
+
## Introduction
|
18 |
+
|
19 |
+
NanoTranslator-immersive_translate-0.5B is a model specifically designed for **Chinese-English bilingual** translation, trained on [wmt-19](https://huggingface.co/datasets/wmt/wmt19) and [BiST](https://huggingface.co/datasets/Mxode/BiST), based on [Qwen2-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2-0.5B-Instruct).
|
20 |
+
|
21 |
+
This model is trained following the [Immersive Translate](https://immersivetranslate.com/) prompt format and can be deployed as an OpenAI format interface using tools like vllm and lmdeploy for utilization.
|
22 |
+
|
23 |
+
## How to use
|
24 |
+
|
25 |
+
Below is a method to call the model using transformers. The prompt follows the immersive translation format to ensure optimal results.
|
26 |
+
|
27 |
+
```python
|
28 |
+
import torch
|
29 |
+
from typing import Literal
|
30 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
31 |
+
|
32 |
+
model_path = 'Mxode/NanoTranslator-immersive_translate-0.5B'
|
33 |
+
|
34 |
+
model = AutoModelForCausalLM.from_pretrained(model_path).to('cuda:0', torch.bfloat16)
|
35 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
36 |
+
|
37 |
+
def translate(
|
38 |
+
text: str,
|
39 |
+
to: Literal["chinese", "english"] = "chinese",
|
40 |
+
**kwargs
|
41 |
+
):
|
42 |
+
generation_args = dict(
|
43 |
+
max_new_tokens = kwargs.pop("max_new_tokens", 512),
|
44 |
+
do_sample = kwargs.pop("do_sample", True),
|
45 |
+
temperature = kwargs.pop("temperature", 0.55),
|
46 |
+
top_p = kwargs.pop("top_p", 0.8),
|
47 |
+
top_k = kwargs.pop("top_k", 40),
|
48 |
+
**kwargs
|
49 |
+
)
|
50 |
+
|
51 |
+
prompt = """Translate the following source text to {to}. Output translation directly without any additional text.
|
52 |
+
Source Text: {text}
|
53 |
+
|
54 |
+
Translated Text:"""
|
55 |
+
|
56 |
+
messages = [
|
57 |
+
{"role": "system", "content": "You are a professional, authentic machine translation engine."},
|
58 |
+
{"role": "user", "content": prompt.format(to=to, text=text)}
|
59 |
+
]
|
60 |
+
inputs = tokenizer.apply_chat_template(
|
61 |
+
messages,
|
62 |
+
tokenize=False,
|
63 |
+
add_generation_prompt=True
|
64 |
+
)
|
65 |
+
model_inputs = tokenizer([inputs], return_tensors="pt").to(model.device)
|
66 |
+
|
67 |
+
generated_ids = model.generate(model_inputs.input_ids, **generation_args)
|
68 |
+
generated_ids = [
|
69 |
+
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
70 |
+
]
|
71 |
+
|
72 |
+
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
73 |
+
return response
|
74 |
+
|
75 |
+
text = "After a long day at work, I love to unwind by cooking a nice dinner and watching my favorite TV series. It really helps me relax and recharge for the next day."
|
76 |
+
response = translate(text=text, to='chinese')
|
77 |
+
print(f'Translation: {response}')
|
78 |
+
|
79 |
+
"""
|
80 |
+
Translation: 工作了一天,我喜欢吃一顿美味的晚餐,看我最喜欢的电视剧,这样做有助于我放松,补充能量。
|
81 |
+
"""
|
82 |
+
```
|
README_zh-CN.md
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# NanoTranslator-immersive_translate-365M
|
2 |
+
|
3 |
+
[English](README.md) | 简体中文
|
4 |
+
|
5 |
+
## Introduction
|
6 |
+
|
7 |
+
NanoTranslator-immersive_translate-365M 是由 [NanoLM-365M-Base](https://huggingface.co/Mxode/NanoLM-365M-Base) 在 [wmt-19](https://huggingface.co/datasets/wmt/wmt19) 数据集上训练了 600 万数据得来的专门用于**中英双语**的翻译模型。
|
8 |
+
|
9 |
+
此模型遵循[沉浸式翻译](https://immersivetranslate.com/)(Immersive Translate)的 prompt 格式进行训练,可以通过 vllm、lmdeploy 等方式部署为 OpenAI 格式接口,从而完成调用。
|
10 |
+
|
11 |
+
## How to use
|
12 |
+
|
13 |
+
下面是一个用 transformers 调用的方式,prompt 遵循沉浸式翻译以保持最佳效果。
|
14 |
+
|
15 |
+
```python
|
16 |
+
import torch
|
17 |
+
from typing import Literal
|
18 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
19 |
+
|
20 |
+
model_path = 'Mxode/NanoTranslator-immersive_translate-365M'
|
21 |
+
|
22 |
+
model = AutoModelForCausalLM.from_pretrained(model_path).to('cuda:0', torch.bfloat16)
|
23 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
24 |
+
|
25 |
+
def translate(
|
26 |
+
text: str,
|
27 |
+
to: Literal["chinese", "english"] = "chinese",
|
28 |
+
**kwargs
|
29 |
+
):
|
30 |
+
generation_args = dict(
|
31 |
+
max_new_tokens = kwargs.pop("max_new_tokens", 512),
|
32 |
+
do_sample = kwargs.pop("do_sample", True),
|
33 |
+
temperature = kwargs.pop("temperature", 0.35),
|
34 |
+
top_p = kwargs.pop("top_p", 0.8),
|
35 |
+
top_k = kwargs.pop("top_k", 40),
|
36 |
+
**kwargs
|
37 |
+
)
|
38 |
+
|
39 |
+
prompt = """Translate the following source text to {to}. Output translation directly without any additional text.
|
40 |
+
Source Text: {text}
|
41 |
+
|
42 |
+
Translated Text:"""
|
43 |
+
|
44 |
+
messages = [
|
45 |
+
{"role": "system", "content": "You are a professional, authentic machine translation engine."},
|
46 |
+
{"role": "user", "content": prompt.format(to=to, text=text)}
|
47 |
+
]
|
48 |
+
inputs = tokenizer.apply_chat_template(
|
49 |
+
messages,
|
50 |
+
tokenize=False,
|
51 |
+
add_generation_prompt=True
|
52 |
+
)
|
53 |
+
model_inputs = tokenizer([inputs], return_tensors="pt").to(model.device)
|
54 |
+
|
55 |
+
generated_ids = model.generate(model_inputs.input_ids, **generation_args)
|
56 |
+
generated_ids = [
|
57 |
+
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
58 |
+
]
|
59 |
+
|
60 |
+
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
61 |
+
return response
|
62 |
+
|
63 |
+
text = "After a long day at work, I love to unwind by cooking a nice dinner and watching my favorite TV series. It really helps me relax and recharge for the next day."
|
64 |
+
response = translate(text=text, to='chinese')
|
65 |
+
print(f'Translation: {response}')
|
66 |
+
|
67 |
+
"""
|
68 |
+
Translation: 工作了一天,我喜欢吃一顿美味的晚餐,看我最喜欢的电视剧,这样做有助于我放松,补充能量。
|
69 |
+
"""
|
70 |
+
```
|
added_tokens.json
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"<|endoftext|>": 151643,
|
3 |
+
"<|im_end|>": 151645,
|
4 |
+
"<|im_start|>": 151644
|
5 |
+
}
|
config.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "Mxode/NanoTranslator-immersive_translate-0.5B",
|
3 |
+
"architectures": [
|
4 |
+
"Qwen2ForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"bos_token_id": 151643,
|
8 |
+
"eos_token_id": 151645,
|
9 |
+
"hidden_act": "silu",
|
10 |
+
"hidden_size": 896,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"intermediate_size": 4864,
|
13 |
+
"max_position_embeddings": 32768,
|
14 |
+
"max_window_layers": 24,
|
15 |
+
"model_type": "qwen2",
|
16 |
+
"num_attention_heads": 14,
|
17 |
+
"num_hidden_layers": 24,
|
18 |
+
"num_key_value_heads": 2,
|
19 |
+
"rms_norm_eps": 1e-06,
|
20 |
+
"rope_theta": 1000000.0,
|
21 |
+
"sliding_window": 32768,
|
22 |
+
"tie_word_embeddings": true,
|
23 |
+
"torch_dtype": "bfloat16",
|
24 |
+
"transformers_version": "4.42.0",
|
25 |
+
"use_cache": false,
|
26 |
+
"use_sliding_window": false,
|
27 |
+
"vocab_size": 151936
|
28 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 151643,
|
3 |
+
"do_sample": true,
|
4 |
+
"eos_token_id": 151645,
|
5 |
+
"max_new_tokens": 2048,
|
6 |
+
"pad_token_id": 151643,
|
7 |
+
"repetition_penalty": 1.1,
|
8 |
+
"temperature": 0.7,
|
9 |
+
"top_k": 20,
|
10 |
+
"top_p": 0.8,
|
11 |
+
"transformers_version": "4.42.0"
|
12 |
+
}
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:690daed27703bfcb6a872c85c59415ed218cf762f6707e7e9e343fc6ddbcaf53
|
3 |
+
size 988097824
|
special_tokens_map.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>"
|
5 |
+
],
|
6 |
+
"eos_token": {
|
7 |
+
"content": "<|im_end|>",
|
8 |
+
"lstrip": false,
|
9 |
+
"normalized": false,
|
10 |
+
"rstrip": false,
|
11 |
+
"single_word": false
|
12 |
+
},
|
13 |
+
"pad_token": {
|
14 |
+
"content": "<|endoftext|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false
|
19 |
+
}
|
20 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"added_tokens_decoder": {
|
4 |
+
"151643": {
|
5 |
+
"content": "<|endoftext|>",
|
6 |
+
"lstrip": false,
|
7 |
+
"normalized": false,
|
8 |
+
"rstrip": false,
|
9 |
+
"single_word": false,
|
10 |
+
"special": true
|
11 |
+
},
|
12 |
+
"151644": {
|
13 |
+
"content": "<|im_start|>",
|
14 |
+
"lstrip": false,
|
15 |
+
"normalized": false,
|
16 |
+
"rstrip": false,
|
17 |
+
"single_word": false,
|
18 |
+
"special": true
|
19 |
+
},
|
20 |
+
"151645": {
|
21 |
+
"content": "<|im_end|>",
|
22 |
+
"lstrip": false,
|
23 |
+
"normalized": false,
|
24 |
+
"rstrip": false,
|
25 |
+
"single_word": false,
|
26 |
+
"special": true
|
27 |
+
}
|
28 |
+
},
|
29 |
+
"additional_special_tokens": [
|
30 |
+
"<|im_start|>",
|
31 |
+
"<|im_end|>"
|
32 |
+
],
|
33 |
+
"bos_token": null,
|
34 |
+
"chat_template": "{% for message in messages %}{% if loop.first and messages[0]['role'] != 'system' %}{{ '<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n' }}{% endif %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
|
35 |
+
"clean_up_tokenization_spaces": false,
|
36 |
+
"eos_token": "<|im_end|>",
|
37 |
+
"errors": "replace",
|
38 |
+
"model_max_length": 32768,
|
39 |
+
"pad_token": "<|endoftext|>",
|
40 |
+
"split_special_tokens": false,
|
41 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
42 |
+
"unk_token": null
|
43 |
+
}
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|