Create README_zh-CN.md
Browse files- README_zh-CN.md +119 -0
README_zh-CN.md
ADDED
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# **NanoTranslator-XL**
|
2 |
+
|
3 |
+
[English](README.md) | 简体中文
|
4 |
+
|
5 |
+
## Introduction
|
6 |
+
|
7 |
+
这是 NanoTranslator 的 **XX-Large** 型号,目前仅支持**英译中**。仓库中同时提供了 ONNX 版本的模型。
|
8 |
+
|
9 |
+
所有模型均收录于 [NanoTranslator Collection](https://huggingface.co/collections/Mxode/nanotranslator-66e1de2ba352e926ae865bd2) 中。
|
10 |
+
|
11 |
+
| | P. | Arch. | Act. | V. | H. | I. | L. | A.H. | K.H. | Tie |
|
12 |
+
| :--: | :-----: | :--: | :--: | :--: | :-----: | :---: | :------: | :--: | :--: | :--: |
|
13 |
+
| [XXL](https://huggingface.co/Mxode/NanoTranslator-XXL) | 100 | LLaMA | SwiGLU | 16000 | 768 | 4096 | 8 | 24 | 8 | True |
|
14 |
+
| [XL](https://huggingface.co/Mxode/NanoTranslator-XL) | 78 | LLaMA | GeGLU | 16000 | 768 | 4096 | 6 | 24 | 8 | True |
|
15 |
+
| [L](https://huggingface.co/Mxode/NanoTranslator-L) | 49 | LLaMA | GeGLU | 16000 | 512 | 2816 | 8 | 16 | 8 | True |
|
16 |
+
| [M2](https://huggingface.co/Mxode/NanoTranslator-M2) | 22 | Qwen2 | GeGLU | 4000 | 432 | 2304 | 6 | 24 | 8 | True |
|
17 |
+
| [M](https://huggingface.co/Mxode/NanoTranslator-M) | 22 | LLaMA | SwiGLU | 8000 | 256 | 1408 | 16 | 16 | 4 | True |
|
18 |
+
| [S](https://huggingface.co/Mxode/NanoTranslator-S) | 9 | LLaMA | SwiGLU | 4000 | 168 | 896 | 16 | 12 | 4 | True |
|
19 |
+
| [XS](https://huggingface.co/Mxode/NanoTranslator-XS) | 2 | LLaMA | SwiGLU | 2000 | 96 | 512 | 12 | 12 | 4 | True |
|
20 |
+
|
21 |
+
- **P.** - Parameters (in million)
|
22 |
+
- **V.** - vocab size
|
23 |
+
- **H.** - hidden size
|
24 |
+
- **I.** - intermediate size
|
25 |
+
- **L.** - num layers
|
26 |
+
- **A.H.** - num attention heads
|
27 |
+
- **K.H.** - num kv heads
|
28 |
+
- **Tie** - tie word embeddings
|
29 |
+
|
30 |
+
|
31 |
+
|
32 |
+
## How to use
|
33 |
+
|
34 |
+
Prompt 格式如下:
|
35 |
+
|
36 |
+
```
|
37 |
+
<|im_start|> {English Text} <|endoftext|>
|
38 |
+
```
|
39 |
+
|
40 |
+
### Directly using transformers
|
41 |
+
|
42 |
+
```python
|
43 |
+
import torch
|
44 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
45 |
+
|
46 |
+
model_path = 'Mxode/NanoTranslator-XL'
|
47 |
+
|
48 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
49 |
+
model = AutoModelForCausalLM.from_pretrained(model_path)
|
50 |
+
|
51 |
+
def translate(text: str, model, **kwargs):
|
52 |
+
generation_args = dict(
|
53 |
+
max_new_tokens = kwargs.pop("max_new_tokens", 512),
|
54 |
+
do_sample = kwargs.pop("do_sample", True),
|
55 |
+
temperature = kwargs.pop("temperature", 0.55),
|
56 |
+
top_p = kwargs.pop("top_p", 0.8),
|
57 |
+
top_k = kwargs.pop("top_k", 40),
|
58 |
+
**kwargs
|
59 |
+
)
|
60 |
+
|
61 |
+
prompt = "<|im_start|>" + text + "<|endoftext|>"
|
62 |
+
model_inputs = tokenizer([prompt], return_tensors="pt").to(model.device)
|
63 |
+
|
64 |
+
generated_ids = model.generate(model_inputs.input_ids, **generation_args)
|
65 |
+
generated_ids = [
|
66 |
+
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
67 |
+
]
|
68 |
+
|
69 |
+
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
70 |
+
return response
|
71 |
+
|
72 |
+
text = "I love to watch my favorite TV series."
|
73 |
+
|
74 |
+
response = translate(text, model, max_new_tokens=64, do_sample=False)
|
75 |
+
print(response)
|
76 |
+
```
|
77 |
+
|
78 |
+
|
79 |
+
### ONNX
|
80 |
+
|
81 |
+
根据实际测试,使用 ONNX 模型推理会比直接使用 transformers 推理要**快 2~10 倍**。
|
82 |
+
|
83 |
+
如果希望使用 ONNX 模型,那么你需要手动切换到 [onnx 分支](https://huggingface.co/Mxode/NanoTranslator-XL/tree/onnx)并从本地加载。
|
84 |
+
|
85 |
+
参考文档:
|
86 |
+
|
87 |
+
- [Export to ONNX](https://huggingface.co/docs/transformers/serialization)
|
88 |
+
- [Inference pipelines with the ONNX Runtime accelerator](https://huggingface.co/docs/optimum/main/en/onnxruntime/usage_guides/pipelines)
|
89 |
+
|
90 |
+
**Using ORTModelForCausalLM**
|
91 |
+
|
92 |
+
```python
|
93 |
+
from optimum.onnxruntime import ORTModelForCausalLM
|
94 |
+
from transformers import AutoTokenizer
|
95 |
+
|
96 |
+
model_path = "your/folder/to/onnx_model"
|
97 |
+
|
98 |
+
ort_model = ORTModelForCausalLM.from_pretrained(model_path)
|
99 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
100 |
+
|
101 |
+
text = "I love to watch my favorite TV series."
|
102 |
+
|
103 |
+
response = translate(text, ort_model, max_new_tokens=64, do_sample=False)
|
104 |
+
print(response)
|
105 |
+
```
|
106 |
+
|
107 |
+
**Using pipeline**
|
108 |
+
|
109 |
+
```python
|
110 |
+
from optimum.pipelines import pipeline
|
111 |
+
|
112 |
+
model_path = "your/folder/to/onnx_model"
|
113 |
+
pipe = pipeline("text-generation", model=model_path, accelerator="ort")
|
114 |
+
|
115 |
+
text = "I love to watch my favorite TV series."
|
116 |
+
|
117 |
+
response = pipe(text, max_new_tokens=64, do_sample=False)
|
118 |
+
response
|
119 |
+
```
|