Mxode commited on
Commit
977a1b5
·
1 Parent(s): 2923c0b
README.md CHANGED
@@ -22,13 +22,14 @@ All models are collected in the [NanoTranslator Collection](https://huggingface.
22
 
23
  | | P. | Arch. | Act. | V. | H. | I. | L. | A.H. | K.H. | Tie |
24
  | :--: | :-----: | :--: | :--: | :--: | :-----: | :---: | :------: | :--: | :--: | :--: |
25
- | [XXL](https://huggingface.co/Mxode/NanoTranslator-XXL) | 100 | LLaMA | SwiGLU | 16000 | 768 | 4096 | 8 | 24 | 8 | True |
26
- | [XL](https://huggingface.co/Mxode/NanoTranslator-XL) | 78 | LLaMA | GeGLU | 16000 | 768 | 4096 | 6 | 24 | 8 | True |
27
- | [L](https://huggingface.co/Mxode/NanoTranslator-L) | 49 | LLaMA | GeGLU | 16000 | 512 | 2816 | 8 | 16 | 8 | True |
28
- | [M2](https://huggingface.co/Mxode/NanoTranslator-M2) | 22 | Qwen2 | GeGLU | 4000 | 432 | 2304 | 6 | 24 | 8 | True |
29
- | [M](https://huggingface.co/Mxode/NanoTranslator-M) | 22 | LLaMA | SwiGLU | 8000 | 256 | 1408 | 16 | 16 | 4 | True |
30
- | [S](https://huggingface.co/Mxode/NanoTranslator-S) | 9 | LLaMA | SwiGLU | 4000 | 168 | 896 | 16 | 12 | 4 | True |
31
- | [XS](https://huggingface.co/Mxode/NanoTranslator-XS) | 2 | LLaMA | SwiGLU | 2000 | 96 | 512 | 12 | 12 | 4 | True |
 
32
 
33
  - **P.** - Parameters (in million)
34
  - **V.** - vocab size
@@ -81,7 +82,7 @@ def translate(text: str, model, **kwargs):
81
  response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
82
  return response
83
 
84
- text = "I love to watch my favorite TV series."
85
 
86
  response = translate(text, model, max_new_tokens=64, do_sample=False)
87
  print(response)
@@ -110,7 +111,7 @@ model_path = "your/folder/to/onnx_model"
110
  ort_model = ORTModelForCausalLM.from_pretrained(model_path)
111
  tokenizer = AutoTokenizer.from_pretrained(model_path)
112
 
113
- text = "I love to watch my favorite TV series."
114
 
115
  response = translate(text, ort_model, max_new_tokens=64, do_sample=False)
116
  print(response)
@@ -124,7 +125,7 @@ from optimum.pipelines import pipeline
124
  model_path = "your/folder/to/onnx_model"
125
  pipe = pipeline("text-generation", model=model_path, accelerator="ort")
126
 
127
- text = "I love to watch my favorite TV series."
128
 
129
  response = pipe(text, max_new_tokens=64, do_sample=False)
130
  response
 
22
 
23
  | | P. | Arch. | Act. | V. | H. | I. | L. | A.H. | K.H. | Tie |
24
  | :--: | :-----: | :--: | :--: | :--: | :-----: | :---: | :------: | :--: | :--: | :--: |
25
+ | [XXL2](https://huggingface.co/Mxode/NanoTranslator-XXL2) | 102 | LLaMA | SwiGLU | 16K | 1120 | 3072 | 6 | 16 | 8 | True |
26
+ | [XXL](https://huggingface.co/Mxode/NanoTranslator-XXL) | 100 | LLaMA | SwiGLU | 16K | 768 | 4096 | 8 | 24 | 8 | True |
27
+ | [XL](https://huggingface.co/Mxode/NanoTranslator-XL) | 78 | LLaMA | GeGLU | 16K | 768 | 4096 | 6 | 24 | 8 | True |
28
+ | [L](https://huggingface.co/Mxode/NanoTranslator-L) | 49 | LLaMA | GeGLU | 16K | 512 | 2816 | 8 | 16 | 8 | True |
29
+ | [M2](https://huggingface.co/Mxode/NanoTranslator-M2) | 22 | Qwen2 | GeGLU | 4K | 432 | 2304 | 6 | 24 | 8 | True |
30
+ | [M](https://huggingface.co/Mxode/NanoTranslator-M) | 22 | LLaMA | SwiGLU | 8K | 256 | 1408 | 16 | 16 | 4 | True |
31
+ | [S](https://huggingface.co/Mxode/NanoTranslator-S) | 9 | LLaMA | SwiGLU | 4K | 168 | 896 | 16 | 12 | 4 | True |
32
+ | [XS](https://huggingface.co/Mxode/NanoTranslator-XS) | 2 | LLaMA | SwiGLU | 2K | 96 | 512 | 12 | 12 | 4 | True |
33
 
34
  - **P.** - Parameters (in million)
35
  - **V.** - vocab size
 
82
  response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
83
  return response
84
 
85
+ text = "Each step of the cell cycle is monitored by internal."
86
 
87
  response = translate(text, model, max_new_tokens=64, do_sample=False)
88
  print(response)
 
111
  ort_model = ORTModelForCausalLM.from_pretrained(model_path)
112
  tokenizer = AutoTokenizer.from_pretrained(model_path)
113
 
114
+ text = "Each step of the cell cycle is monitored by internal."
115
 
116
  response = translate(text, ort_model, max_new_tokens=64, do_sample=False)
117
  print(response)
 
125
  model_path = "your/folder/to/onnx_model"
126
  pipe = pipeline("text-generation", model=model_path, accelerator="ort")
127
 
128
+ text = "Each step of the cell cycle is monitored by internal."
129
 
130
  response = pipe(text, max_new_tokens=64, do_sample=False)
131
  response
README_zh-CN.md CHANGED
@@ -10,13 +10,14 @@
10
 
11
  | | P. | Arch. | Act. | V. | H. | I. | L. | A.H. | K.H. | Tie |
12
  | :--: | :-----: | :--: | :--: | :--: | :-----: | :---: | :------: | :--: | :--: | :--: |
13
- | [XXL](https://huggingface.co/Mxode/NanoTranslator-XXL) | 100 | LLaMA | SwiGLU | 16000 | 768 | 4096 | 8 | 24 | 8 | True |
14
- | [XL](https://huggingface.co/Mxode/NanoTranslator-XL) | 78 | LLaMA | GeGLU | 16000 | 768 | 4096 | 6 | 24 | 8 | True |
15
- | [L](https://huggingface.co/Mxode/NanoTranslator-L) | 49 | LLaMA | GeGLU | 16000 | 512 | 2816 | 8 | 16 | 8 | True |
16
- | [M2](https://huggingface.co/Mxode/NanoTranslator-M2) | 22 | Qwen2 | GeGLU | 4000 | 432 | 2304 | 6 | 24 | 8 | True |
17
- | [M](https://huggingface.co/Mxode/NanoTranslator-M) | 22 | LLaMA | SwiGLU | 8000 | 256 | 1408 | 16 | 16 | 4 | True |
18
- | [S](https://huggingface.co/Mxode/NanoTranslator-S) | 9 | LLaMA | SwiGLU | 4000 | 168 | 896 | 16 | 12 | 4 | True |
19
- | [XS](https://huggingface.co/Mxode/NanoTranslator-XS) | 2 | LLaMA | SwiGLU | 2000 | 96 | 512 | 12 | 12 | 4 | True |
 
20
 
21
  - **P.** - Parameters (in million)
22
  - **V.** - vocab size
@@ -69,7 +70,7 @@ def translate(text: str, model, **kwargs):
69
  response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
70
  return response
71
 
72
- text = "I love to watch my favorite TV series."
73
 
74
  response = translate(text, model, max_new_tokens=64, do_sample=False)
75
  print(response)
@@ -98,7 +99,7 @@ model_path = "your/folder/to/onnx_model"
98
  ort_model = ORTModelForCausalLM.from_pretrained(model_path)
99
  tokenizer = AutoTokenizer.from_pretrained(model_path)
100
 
101
- text = "I love to watch my favorite TV series."
102
 
103
  response = translate(text, ort_model, max_new_tokens=64, do_sample=False)
104
  print(response)
@@ -112,7 +113,7 @@ from optimum.pipelines import pipeline
112
  model_path = "your/folder/to/onnx_model"
113
  pipe = pipeline("text-generation", model=model_path, accelerator="ort")
114
 
115
- text = "I love to watch my favorite TV series."
116
 
117
  response = pipe(text, max_new_tokens=64, do_sample=False)
118
  response
 
10
 
11
  | | P. | Arch. | Act. | V. | H. | I. | L. | A.H. | K.H. | Tie |
12
  | :--: | :-----: | :--: | :--: | :--: | :-----: | :---: | :------: | :--: | :--: | :--: |
13
+ | [XXL2](https://huggingface.co/Mxode/NanoTranslator-XXL2) | 102 | LLaMA | SwiGLU | 16K | 1120 | 3072 | 6 | 16 | 8 | True |
14
+ | [XXL](https://huggingface.co/Mxode/NanoTranslator-XXL) | 100 | LLaMA | SwiGLU | 16K | 768 | 4096 | 8 | 24 | 8 | True |
15
+ | [XL](https://huggingface.co/Mxode/NanoTranslator-XL) | 78 | LLaMA | GeGLU | 16K | 768 | 4096 | 6 | 24 | 8 | True |
16
+ | [L](https://huggingface.co/Mxode/NanoTranslator-L) | 49 | LLaMA | GeGLU | 16K | 512 | 2816 | 8 | 16 | 8 | True |
17
+ | [M2](https://huggingface.co/Mxode/NanoTranslator-M2) | 22 | Qwen2 | GeGLU | 4K | 432 | 2304 | 6 | 24 | 8 | True |
18
+ | [M](https://huggingface.co/Mxode/NanoTranslator-M) | 22 | LLaMA | SwiGLU | 8K | 256 | 1408 | 16 | 16 | 4 | True |
19
+ | [S](https://huggingface.co/Mxode/NanoTranslator-S) | 9 | LLaMA | SwiGLU | 4K | 168 | 896 | 16 | 12 | 4 | True |
20
+ | [XS](https://huggingface.co/Mxode/NanoTranslator-XS) | 2 | LLaMA | SwiGLU | 2K | 96 | 512 | 12 | 12 | 4 | True |
21
 
22
  - **P.** - Parameters (in million)
23
  - **V.** - vocab size
 
70
  response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
71
  return response
72
 
73
+ text = "Each step of the cell cycle is monitored by internal."
74
 
75
  response = translate(text, model, max_new_tokens=64, do_sample=False)
76
  print(response)
 
99
  ort_model = ORTModelForCausalLM.from_pretrained(model_path)
100
  tokenizer = AutoTokenizer.from_pretrained(model_path)
101
 
102
+ text = "Each step of the cell cycle is monitored by internal."
103
 
104
  response = translate(text, ort_model, max_new_tokens=64, do_sample=False)
105
  print(response)
 
113
  model_path = "your/folder/to/onnx_model"
114
  pipe = pipeline("text-generation", model=model_path, accelerator="ort")
115
 
116
+ text = "Each step of the cell cycle is monitored by internal."
117
 
118
  response = pipe(text, max_new_tokens=64, do_sample=False)
119
  response
config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "LlamaForCausalLM"
4
+ ],
5
+ "attention_bias": false,
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 1,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_size": 512,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 2816,
13
+ "max_position_embeddings": 2048,
14
+ "mlp_bias": false,
15
+ "model_type": "llama",
16
+ "num_attention_heads": 16,
17
+ "num_hidden_layers": 8,
18
+ "num_key_value_heads": 8,
19
+ "pretraining_tp": 1,
20
+ "rms_norm_eps": 1e-06,
21
+ "rope_scaling": null,
22
+ "rope_theta": 10000.0,
23
+ "tie_word_embeddings": true,
24
+ "torch_dtype": "float32",
25
+ "transformers_version": "4.42.4",
26
+ "use_cache": true,
27
+ "vocab_size": 16000
28
+ }
generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": 2,
5
+ "transformers_version": "4.42.4"
6
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ece6d628a0f001cd501bfeee7182c632119519d5b5787b26bd3fc66d1ff0f4d3
3
+ size 196388824
result.log ADDED
@@ -0,0 +1 @@
 
 
1
+ {'train_runtime': 10636.9905, 'train_samples_per_second': 1509.392, 'train_steps_per_second': 2.948, 'train_loss': 1.2621650553170833, 'epoch': 1.0}
special_tokens_map.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<|endoftext|>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|im_end|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<|endoftext|>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ }
23
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<|endoftext|>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<|im_start|>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "<|im_end|>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ }
27
+ },
28
+ "bos_token": "<|endoftext|>",
29
+ "chat_template": "{% for message in messages %}{% if loop.first and messages[0]['role'] != 'system' %}{{ '<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n' }}{% endif %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
30
+ "clean_up_tokenization_spaces": false,
31
+ "eos_token": "<|im_end|>",
32
+ "errors": "replace",
33
+ "model_max_length": 4096,
34
+ "pad_token": "<|endoftext|>",
35
+ "split_special_tokens": false,
36
+ "tokenizer_class": "PreTrainedTokenizerFast"
37
+ }
trainer_state.json ADDED
The diff for this file is too large to render. See raw diff