|
from typing import Dict, List, Any |
|
import time |
|
|
|
import torch |
|
from transformers import AutoTokenizer, AutoModel |
|
|
|
|
|
|
|
|
|
class EndpointHandler: |
|
def __init__(self, path=''): |
|
self.tokenizer = AutoTokenizer.from_pretrained(path) |
|
self.model = AutoModel.from_pretrained(path, load_in_8bit=True) |
|
|
|
def __call__(self, data: Dict[str, Any]) -> Dict[str, str]: |
|
inputs = data.pop('inputs', data) |
|
parameters = data.pop('parameters', {}) |
|
|
|
starting_time = time.time() |
|
|
|
tokenized = self.tokenizer(inputs, return_tensors='pt') |
|
out = self.model.generate(tokenized.to('cuda'), **parameters).to('cpu') |
|
detokenized = self.tokenizer.batch_decode(out) |
|
|
|
ending_time = time.time() |
|
|
|
return [{'generated_text': detokenized, 'generation_time': ending_time-starting_time}] |