File size: 64,430 Bytes
a13262e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 |
---
language:
- en
license: apache-2.0
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:900
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: BAAI/bge-base-en-v1.5
datasets: []
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
widget:
- source_sentence: Automation View Cookie Consent View Universal Consent View Vendor
Risk Assessment View Breach Management View Privacy Policy Management View Privacy
Center View Learn more Security Identify data risk and enable protection & control
Data Security Posture Management View Data Access Intelligence & Governance View
Data Risk Management View Data Breach Analysis View Learn more Governance Optimize
Data Governance with granular insights into your data Data Catalog View Data Lineage
View Data Quality View Data Controls Orchestrator View Solutions Technologies
Covering you everywhere with 1000+ integrations across data systems. Snowflake
View AWS View Microsoft 365 View Salesforce View Workday View GCP View Azure View
Oracle View Learn more Regulations Automate compliance with global privacy regulations.
US California CCPA View US California CPRA View European Union GDPR View Thailand’s
PDPA View China PIPL View Canada PIPEDA View Brazil's LGPD View \+ More View Learn
more Roles Identify data risk and enable protection & control. Privacy View Security
View Governance View Marketing View Resources Blog Read through our articles written
by industry experts Collateral Product brochures, white papers, infographics,
analyst reports and more. Knowledge Center Learn about the data privacy, security
and governance landscape. Securiti Education Courses and Certifications for data
privacy, security and governance professionals. Company About Us Learn all about
Securiti, our mission and history Partner Program Join our Partner Program Contact
Us Contact us to learn more or schedule a demo News Coverage Read about Securiti
sentences:
- What does DSPM stand for in Privacy Center and its related products and services?
- Which agency protects Californians' digital privacy under CPRA?
- How does Data Security Posture Management help with data risk identification and
control?
- source_sentence: 'the affected data subjects and regulatory authority about the
breach and whether any of their information has been compromised as a result.
### Data Protection Impact Assessment There is no requirement for conducting data
protection impact assessment under the PDPA. ### Record of Processing Activities
A data controller must keep and maintain a record of any privacy notice, data
subject request, or any other information relating to personal data processed
by him in the form and manner that may be determined by the regulatory authority.
### Cross Border Data Transfer Requirements The PDPA provides that personal data
can be transferred out of Malaysia only when the recipient country is specified
as adequate in the Official Gazette. The personal data of data subjects can not
be disclosed without the consent of the data subject. The PDPA provides the following
exceptions to the cross border data transfer requirements: Where the consent of
data subject is obtained for transfer; or Where the transfer is necessary for
the performance of contract between the parties; The transfer is for the purpose
of any legal proceedings or for the purpose of obtaining legal advice or for establishing,
exercising or defending legal rights; The data user has taken all reasonable precautions
and exercised all due diligence to ensure that the personal data will not in that
place be processed in any manner which, if that place is Malaysia, would be a
contravention of this PDPA; The transfer is necessary in order to protect the
vital interests of the data subject; or The transfer is necessary as being in
the public interest in circumstances as determined by the Minister. ## Data Subject
Rights The data subjects or the person whose data is being collected has certain
rights under the PDPA. The most prominent rights can be categorized under the
following: ## Right to withdraw consent The PDPA, like some of the other landmark
data protection laws such as CPRA and GDPR gives data subjects the right to revoke
their consent at any time by way of written notice from having their data collected
processed. ## Right to access and rectification As per this right, anyone whose
data has been collected has the right to request to review their personal data
and have it updated. The onus is on the data handlers to respond to such a request
as soon as possible while also making it easier for data subjects on how they
can request access to their personal data. ## Right to data portability Data subjects
have the right to request that their data be stored in a manner where it'
sentences:
- How can data subjects exercise their right to data portability under the PDPA?
- What are the potential fines and penalties for non-compliance with POPIA?
- What actions must organizations take under New Zealand's Privacy Act 2020, including
breach notifications and Data Protection Officer appointment?
- source_sentence: 'Securiti, our mission is to enable enterprises to safely harness
the incredible power of data and the cloud by controlling the complex security,
privacy and compliance risks. Copyright (C) 2023 Securiti Sitemap XML Sitemap
#### Newsletter #### Company About Us Careers Contact Us Partner Program News
Coverage Press Releases #### Resources Blog Collateral Knowledge Center Securiti
Education Privacy Center Free Do Not Sell Tool What is DSPM #### Terms Terms &
Policies Security & Compliance Manage cookie preferences My Privacy Center ####
Get in touch email protected 300 Santana Row Suite 450. San Jose, CA 95128 Contact
Us Schedule a Demo Products By Role Data Command Center Sensitive Data Intelligence
Privacy Security Governance Data Controls Orchestrator By Use Cases Back Asset
Discovery Asset Discovery Data Discovery & Classification Data Discovery & Classification
Sensitive Data Catalog Sensitive Data Catalog People Data Graph People Data Graph
Data Mapping Automation View Data Subject Request Automation View People Data
Graph View Assessment Automation View Cookie Consent View Universal Consent View
Vendor Risk Assessment View Breach Management View Privacy Policy Management View
Privacy Center View Data Security Posture Management View Data Access Intelligence
& Governance View Data Risk Management View Data Breach Analysis View Data Catalog
View Data Lineage View Data Quality View Asset and Data Discovery View Data Access
Intelligence & Governance View Data Privacy Automation View Sensitive Data Intelligence
View Data Flow Intelligence & Governance View Data Consent Automation View Data
Security Posture Management View Data Breach Impact Analysis & Response View Data
Catalog View Data Lineage View Solutions'
sentences:
- What is the purpose of the "Terms & Policies" section in the context of iti Education?
- How does SDI contribute to Securiti's mission of controlling security, privacy,
and compliance risks in data and cloud usage?
- What is the definition of personal data under Singapore's PDPA and how does it
compare to other countries' data protection laws?
- source_sentence: 'View Data Quality View Data Controls Orchestrator View Solutions
Technologies Covering you everywhere with 1000+ integrations across data systems.
Snowflake View AWS View Microsoft 365 View Salesforce View Workday View GCP View
Azure View Oracle View Learn more Regulations Automate compliance with global
privacy regulations. US California CCPA View US California CPRA View European
Union GDPR View Thailand’s PDPA View China PIPL View Canada PIPEDA View Brazil''s
LGPD View \+ More View Learn more Roles Identify data risk and enable protection
& control. Privacy View Security View Governance View Marketing View Resources
Blog Read through our articles written by industry experts Collateral Product
brochures, white papers, infographics, analyst reports and more. Knowledge Center
Learn about the data privacy, security and governance landscape. Securiti Education
Courses and Certifications for data privacy, security and governance professionals.
Company About Us Learn all about Securiti, our mission and history Partner Program
Join our Partner Program Contact Us Contact us to learn more or schedule a demo
News Coverage Read about Securiti in the news Press Releases Find our latest press
releases Careers Join the talented Securiti team Blog » Data Privacy Automation
# International data transfers under New Zealand’s new Privacy Act By Securiti
Research Team Published December 3, 2020 / Updated October 3, 2023 Table of contents
Step 1: Assess whether the foreign entity provides comparable privacy safeguards
Step 2: Enter into a contract with the data recipient ensuring comparable privacy
safeguards Step 3: Take express authorisation of the concerned data subject Step
4: Confirm whether the foreign entity or person is part of'
sentences:
- How can organizations automate compliance with Uganda's Data Protection and Privacy
Act 2019 for data subject requests?
- What information is the data controller required to provide to the data subject
under PDPL?
- What are the solutions and technologies offered by Securiti?
- source_sentence: View GCP View Azure View Oracle View US California CCPA View US
California CPRA View European Union GDPR View Thailand’s PDPA View China PIPL
View Canada PIPEDA View Brazil's LGPD View \+ More View Privacy View Security
View Governance View Marketing View Resources Blog View Collateral View Knowledge
Center View Securiti Education View Company About Us View Partner Program View
Contact Us View News Coverage View Press Releases View Careers View Events Spotlight
Talks IDC Names Securiti a Worldwide Leader in Data Privacy View Events Spotlight
Talks Education Contact Us Schedule a Demo Products By Use Cases By Roles Data
Command Center View Learn more Asset and Data Discovery Discover dark and native
data assets Learn more Data Access Intelligence & Governance Identify which users
have access to sensitive data and prevent unauthorized access Learn more Data
Privacy Automation PrivacyCenter.Cloud | Data Mapping | DSR Automation | Assessment
Automation | Vendor Assessment | Breach Management | Privacy Notice Learn more
Sensitive Data Intelligence Discover & Classify Structured and Unstructured Data
| People Data Graph Learn more Data Flow Intelligence & Governance Prevent sensitive
data sprawl through real-time streaming platforms Learn more Data Consent Automation
First Party Consent | Third Party & Cookie Consent Learn more Data Security Posture
Management Secure sensitive data in hybrid multicloud and SaaS environments Learn
more Data Breach Impact Analysis & Response Analyze impact of a data breach and
coordinate response per global regulatory obligations Learn more Data Catalog
Automatically catalog datasets and enable users to find, understand, trust and
access data Learn more Data Lineage , GCP View Azure View Oracle View US California
CCPA View US California CPRA View European Union GDPR View Thailand’s PDPA View
China PIPL View Canada PIPEDA View Brazil's LGPD View \+ More View Privacy View
Security View Governance View Marketing View Resources Blog View Collateral View
Knowledge Center View Securiti Education View Company About Us View Partner Program
View Contact Us View News Coverage View Press Releases View Careers View Events
Spotlight Talks IDC Names Securiti a Worldwide Leader in Data Privacy View Events
Spotlight Talks Education Contact Us Schedule a Demo Products By Use Cases By
Roles Data Command Center View Learn more Asset and Data Discovery Discover dark
and native data assets Learn more Data Access Intelligence & Governance Identify
which users have access to sensitive data and prevent unauthorized access Learn
more Data Privacy Automation PrivacyCenter.Cloud | Data Mapping | DSR Automation
| Assessment Automation | Vendor Assessment | Breach Management | Privacy Notice
Learn more Sensitive Data Intelligence Discover & Classify Structured and Unstructured
Data | People Data Graph Learn more Data Flow Intelligence & Governance Prevent
sensitive data sprawl through real-time streaming platforms Learn more Data Consent
Automation First Party Consent | Third Party & Cookie Consent Learn more Data
Security Posture Management Secure sensitive data in hybrid multicloud and SaaS
environments Learn more Data Breach Impact Analysis & Response Analyze impact
of a data breach and coordinate response per global regulatory obligations Learn
more Data Catalog Automatically catalog datasets and enable users to find, understand,
trust and access data Learn more Data Lineage Track changes
sentences:
- What is the name of the data protection law in Switzerland and how does it align
with GDPR?
- What products and solutions does Oracle offer for data privacy and security, and
how do they comply with regulations in different regions and countries?
- What are the key provisions and changes in the Personal Data Protection Bill 2021
in India, and how can Securiti assist with compliance?
pipeline_tag: sentence-similarity
model-index:
- name: SentenceTransformer based on BAAI/bge-base-en-v1.5
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.1
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.36
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.52
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.75
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.1
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.12000000000000002
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.10399999999999998
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.07499999999999998
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.1
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.36
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.52
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.75
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.38525834974191675
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.2732420634920635
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.2814101237233525
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.09
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.37
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.51
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.74
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.09
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.12333333333333334
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.10199999999999998
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.07399999999999998
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.09
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.37
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.51
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.74
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.3758407177747965
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.2634761904761904
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.27248653158220537
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.1
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.35
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.47
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.72
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.1
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.11666666666666668
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.09399999999999999
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.07199999999999998
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.1
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.35
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.47
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.72
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.36999387575978315
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.2624880952380952
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.2732550259916666
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.07
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.33
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.48
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.71
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.07
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.11000000000000001
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.09599999999999997
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.07099999999999998
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.07
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.33
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.48
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.71
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.3526473529461716
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.24250396825396822
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.25319653384818785
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.06
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.32
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.46
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.68
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.06
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.10666666666666667
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.09199999999999997
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.06799999999999998
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.06
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.32
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.46
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.68
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.33933653623127435
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.23408730158730165
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.24510801120449394
name: Cosine Map@100
---
# SentenceTransformer based on BAAI/bge-base-en-v1.5
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
- **Language:** en
- **License:** apache-2.0
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("MugheesAwan11/bge-base-securiti-dataset-1-v11")
# Run inference
sentences = [
"View GCP View Azure View Oracle View US California CCPA View US California CPRA View European Union GDPR View Thailand’s PDPA View China PIPL View Canada PIPEDA View Brazil's LGPD View \\+ More View Privacy View Security View Governance View Marketing View Resources Blog View Collateral View Knowledge Center View Securiti Education View Company About Us View Partner Program View Contact Us View News Coverage View Press Releases View Careers View Events Spotlight Talks IDC Names Securiti a Worldwide Leader in Data Privacy View Events Spotlight Talks Education Contact Us Schedule a Demo Products By Use Cases By Roles Data Command Center View Learn more Asset and Data Discovery Discover dark and native data assets Learn more Data Access Intelligence & Governance Identify which users have access to sensitive data and prevent unauthorized access Learn more Data Privacy Automation PrivacyCenter.Cloud | Data Mapping | DSR Automation | Assessment Automation | Vendor Assessment | Breach Management | Privacy Notice Learn more Sensitive Data Intelligence Discover & Classify Structured and Unstructured Data | People Data Graph Learn more Data Flow Intelligence & Governance Prevent sensitive data sprawl through real-time streaming platforms Learn more Data Consent Automation First Party Consent | Third Party & Cookie Consent Learn more Data Security Posture Management Secure sensitive data in hybrid multicloud and SaaS environments Learn more Data Breach Impact Analysis & Response Analyze impact of a data breach and coordinate response per global regulatory obligations Learn more Data Catalog Automatically catalog datasets and enable users to find, understand, trust and access data Learn more Data Lineage , GCP View Azure View Oracle View US California CCPA View US California CPRA View European Union GDPR View Thailand’s PDPA View China PIPL View Canada PIPEDA View Brazil's LGPD View \\+ More View Privacy View Security View Governance View Marketing View Resources Blog View Collateral View Knowledge Center View Securiti Education View Company About Us View Partner Program View Contact Us View News Coverage View Press Releases View Careers View Events Spotlight Talks IDC Names Securiti a Worldwide Leader in Data Privacy View Events Spotlight Talks Education Contact Us Schedule a Demo Products By Use Cases By Roles Data Command Center View Learn more Asset and Data Discovery Discover dark and native data assets Learn more Data Access Intelligence & Governance Identify which users have access to sensitive data and prevent unauthorized access Learn more Data Privacy Automation PrivacyCenter.Cloud | Data Mapping | DSR Automation | Assessment Automation | Vendor Assessment | Breach Management | Privacy Notice Learn more Sensitive Data Intelligence Discover & Classify Structured and Unstructured Data | People Data Graph Learn more Data Flow Intelligence & Governance Prevent sensitive data sprawl through real-time streaming platforms Learn more Data Consent Automation First Party Consent | Third Party & Cookie Consent Learn more Data Security Posture Management Secure sensitive data in hybrid multicloud and SaaS environments Learn more Data Breach Impact Analysis & Response Analyze impact of a data breach and coordinate response per global regulatory obligations Learn more Data Catalog Automatically catalog datasets and enable users to find, understand, trust and access data Learn more Data Lineage Track changes",
'What products and solutions does Oracle offer for data privacy and security, and how do they comply with regulations in different regions and countries?',
'What are the key provisions and changes in the Personal Data Protection Bill 2021 in India, and how can Securiti assist with compliance?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Information Retrieval
* Dataset: `dim_768`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.1 |
| cosine_accuracy@3 | 0.36 |
| cosine_accuracy@5 | 0.52 |
| cosine_accuracy@10 | 0.75 |
| cosine_precision@1 | 0.1 |
| cosine_precision@3 | 0.12 |
| cosine_precision@5 | 0.104 |
| cosine_precision@10 | 0.075 |
| cosine_recall@1 | 0.1 |
| cosine_recall@3 | 0.36 |
| cosine_recall@5 | 0.52 |
| cosine_recall@10 | 0.75 |
| cosine_ndcg@10 | 0.3853 |
| cosine_mrr@10 | 0.2732 |
| **cosine_map@100** | **0.2814** |
#### Information Retrieval
* Dataset: `dim_512`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.09 |
| cosine_accuracy@3 | 0.37 |
| cosine_accuracy@5 | 0.51 |
| cosine_accuracy@10 | 0.74 |
| cosine_precision@1 | 0.09 |
| cosine_precision@3 | 0.1233 |
| cosine_precision@5 | 0.102 |
| cosine_precision@10 | 0.074 |
| cosine_recall@1 | 0.09 |
| cosine_recall@3 | 0.37 |
| cosine_recall@5 | 0.51 |
| cosine_recall@10 | 0.74 |
| cosine_ndcg@10 | 0.3758 |
| cosine_mrr@10 | 0.2635 |
| **cosine_map@100** | **0.2725** |
#### Information Retrieval
* Dataset: `dim_256`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.1 |
| cosine_accuracy@3 | 0.35 |
| cosine_accuracy@5 | 0.47 |
| cosine_accuracy@10 | 0.72 |
| cosine_precision@1 | 0.1 |
| cosine_precision@3 | 0.1167 |
| cosine_precision@5 | 0.094 |
| cosine_precision@10 | 0.072 |
| cosine_recall@1 | 0.1 |
| cosine_recall@3 | 0.35 |
| cosine_recall@5 | 0.47 |
| cosine_recall@10 | 0.72 |
| cosine_ndcg@10 | 0.37 |
| cosine_mrr@10 | 0.2625 |
| **cosine_map@100** | **0.2733** |
#### Information Retrieval
* Dataset: `dim_128`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.07 |
| cosine_accuracy@3 | 0.33 |
| cosine_accuracy@5 | 0.48 |
| cosine_accuracy@10 | 0.71 |
| cosine_precision@1 | 0.07 |
| cosine_precision@3 | 0.11 |
| cosine_precision@5 | 0.096 |
| cosine_precision@10 | 0.071 |
| cosine_recall@1 | 0.07 |
| cosine_recall@3 | 0.33 |
| cosine_recall@5 | 0.48 |
| cosine_recall@10 | 0.71 |
| cosine_ndcg@10 | 0.3526 |
| cosine_mrr@10 | 0.2425 |
| **cosine_map@100** | **0.2532** |
#### Information Retrieval
* Dataset: `dim_64`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.06 |
| cosine_accuracy@3 | 0.32 |
| cosine_accuracy@5 | 0.46 |
| cosine_accuracy@10 | 0.68 |
| cosine_precision@1 | 0.06 |
| cosine_precision@3 | 0.1067 |
| cosine_precision@5 | 0.092 |
| cosine_precision@10 | 0.068 |
| cosine_recall@1 | 0.06 |
| cosine_recall@3 | 0.32 |
| cosine_recall@5 | 0.46 |
| cosine_recall@10 | 0.68 |
| cosine_ndcg@10 | 0.3393 |
| cosine_mrr@10 | 0.2341 |
| **cosine_map@100** | **0.2451** |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 900 training samples
* Columns: <code>positive</code> and <code>anchor</code>
* Approximate statistics based on the first 1000 samples:
| | positive | anchor |
|:--------|:--------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 159 tokens</li><li>mean: 444.92 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 21.97 tokens</li><li>max: 82 tokens</li></ul> |
* Samples:
| positive | anchor |
|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------|
| <code>Consent | Third Party & Cookie Consent Learn more Data Security Posture Management Secure sensitive data in hybrid multicloud and SaaS environments Learn more Data Breach Impact Analysis & Response Analyze impact of a data breach and coordinate response per global regulatory obligations Learn more Data Catalog Automatically catalog datasets and enable users to find, understand, trust and access data Learn more Data Lineage Track changes and transformations of data throughout its lifecycle Data Controls Orchestrator View Data Command Center View Sensitive Data Intelligence View Asset Discovery Data Discovery & Classification Sensitive Data Catalog People Data Graph Learn more Privacy Automate compliance with global privacy regulations Data Mapping Automation View Data Subject Request Automation View People Data Graph View Assessment Automation View Cookie Consent View Universal Consent View Vendor Risk Assessment View Breach Management View Privacy Policy Management View Privacy Center View Learn more Security Identify data risk and enable protection & control Data Security Posture Management View Data Access Intelligence & Governance View Data Risk Management View Data Breach Analysis View Learn more Governance Optimize Data Governance with granular insights into your data Data Catalog View Data Lineage View Data Quality View Data Controls Orchestrator View Solutions Technologies Covering you everywhere with 1000+ integrations across data systems. Snowflake View AWS View Microsoft 365 View Salesforce View Workday View GCP View Azure View Oracle View Learn more Regulations Automate compliance with global privacy regulations. US California CCPA View US California CPRA View European Union GDPR View Thailand’s PDPA View China PIPL View Canada, Consent | Third Party & Cookie Consent Learn more Data Security Posture Management Secure sensitive data in hybrid multicloud and SaaS environments Learn more Data Breach Impact Analysis & Response Analyze impact of a data breach and coordinate response per global regulatory obligations Learn more Data Catalog Automatically catalog datasets and enable users to find, understand, trust and access data Learn more Data Lineage Track changes and transformations of data throughout its lifecycle Data Controls Orchestrator View Data Command Center View Sensitive Data Intelligence View Asset Discovery Data Discovery & Classification Sensitive Data Catalog People Data Graph Learn more Privacy Automate compliance with global privacy regulations Data Mapping Automation View Data Subject Request Automation View People Data Graph View Assessment Automation View Cookie Consent View Universal Consent View Vendor Risk Assessment View Breach Management View Privacy Policy Management View Privacy Center View Learn more Security Identify data risk and enable protection & control Data Security Posture Management View Data Access Intelligence & Governance View Data Risk Management View Data Breach Analysis View Learn more Governance Optimize Data Governance with granular insights into your data Data Catalog View Data Lineage View Data Quality View Data Controls Orchestrator View Solutions Technologies Covering you everywhere with 1000+ integrations across data systems. Snowflake View AWS View Microsoft 365 View Salesforce View Workday View GCP View Azure View Oracle View Learn more Regulations Automate compliance with global privacy regulations. US California CCPA View US California CPRA View European Union GDPR View Thailand’s PDPA View China PIPL View Canada</code> | <code>What enables users to find and access datasets in the Data Catalog?</code> |
| <code>PA View China PIPL View Canada PIPEDA View Brazil's LGPD View \+ More View Privacy View Security View Governance View Marketing View Resources Blog View Collateral View Knowledge Center View Securiti Education View Company About Us View Partner Program View Contact Us View News Coverage View Press Releases View Careers View Events Spotlight Talks IDC Names Securiti a Worldwide Leader in Data Privacy View Events Spotlight Talks Education Contact Us Schedule a Demo Products By Use Cases By Roles Data Command Center View Learn more Asset and Data Discovery Discover dark and native data assets Learn more Data Access Intelligence & Governance Identify which users have access to sensitive data and prevent unauthorized access Learn more Data Privacy Automation PrivacyCenter.Cloud | Data Mapping | DSR Automation | Assessment Automation | Vendor Assessment | Breach Management | Privacy Notice Learn more Sensitive Data Intelligence Discover & Classify Structured and Unstructured Data | People Data Graph Learn more Data Flow Intelligence & Governance Prevent sensitive data sprawl through real-time streaming platforms Learn more Data Consent Automation First Party Consent | Third Party & Cookie Consent Learn more Data Security Posture Management Secure sensitive data in hybrid multicloud and SaaS environments Learn more Data Breach Impact Analysis & Response Analyze impact of a data breach and coordinate response per global regulatory obligations Learn more Data Catalog Automatically catalog datasets and enable users to find, understand, trust and access data Learn more Data Lineage Track changes and transformations of data throughout its lifecycle Data Controls Orchestrator View Data Command Center View Sensitive Data Intelligence View Asset Discovery Data Discovery & Classification Sensitive Data Catalog People Data</code> | <code>What is Brazil's LGPD?</code> |
| <code>MoTC is responsible for the enforcement of the DPL. . 4 The MoTC can also impose fines of up to QAR 5 million (US$1.4 million) for violations of certain provisions of the DPL. 5 There is currently no obligation for organizations in Qatar to appoint a data protection officer under the DPL. ### Forrester Names Securiti a Leader in the Privacy Management Wave Q4, 2021 Read the Report ### Securiti named a Leader in the IDC MarketScape for Data Privacy Compliance Software Read the Report At Securiti, our mission is to enable enterprises to safely harness the incredible power of data and the cloud by controlling the complex security, privacy and compliance risks. Copyright (C) 2023 Securiti Sitemap XML Sitemap #### Newsletter #### Company About Us Careers Contact Us Partner Program News Coverage Press Releases #### Resources Blog Collateral Knowledge Center Securiti Education Privacy Center Free Do Not Sell Tool What is DSPM #### Terms Terms & Policies Security & Compliance Manage cookie preferences My Privacy Center #### Get in touch email protected 300 Santana Row Suite 450. San Jose, CA 95128 Contact Us Schedule a Demo Products By Role Data Command Center Sensitive Data Intelligence Privacy Security Governance Data Controls Orchestrator By Use Cases Back Asset Discovery Asset Discovery Data Discovery & Classification Data Discovery & Classification Sensitive Data Catalog Sensitive Data Catalog People Data Graph People Data Graph Data Mapping Automation View Data Subject Request Automation View People Data Graph View Assessment Automation View Cookie Consent View Universal Consent View Vendor Risk Assessment View Breach Management View Privacy Policy Management View Privacy Center View Data Security Posture Management View Data Access Intelligence & Governance View Data Risk Management , . 5 Infringement of the provisions of the DPA may be penalized by not more than KES 5 million or 1% of the previous fiscal year’s annual turnover. ### Forrester Names Securiti a Leader in the Privacy Management Wave Q4, 2021 Read the Report ### Securiti named a Leader in the IDC MarketScape for Data Privacy Compliance Software Read the Report At Securiti, our mission is to enable enterprises to safely harness the incredible power of data and the cloud by controlling the complex security, privacy and compliance risks. Copyright (C) 2023 Securiti Sitemap XML Sitemap #### Newsletter #### Company About Us Careers Contact Us Partner Program News Coverage Press Releases #### Resources Blog Collateral Knowledge Center Securiti Education Privacy Center Free Do Not Sell Tool What is DSPM #### Terms Terms & Policies Security & Compliance Manage cookie preferences My Privacy Center #### Get in touch email protected 300 Santana Row Suite 450. San Jose, CA 95128 Contact Us Schedule a Demo Products By Role Data Command Center Sensitive Data Intelligence Privacy Security Governance Data Controls Orchestrator By Use Cases Back Asset Discovery Asset Discovery Data Discovery & Classification Data Discovery & Classification Sensitive Data Catalog Sensitive Data Catalog People Data Graph People Data Graph Data Mapping Automation View Data Subject Request Automation View People Data Graph View Assessment Automation View Cookie Consent View Universal Consent View Vendor Risk Assessment View Breach Management View Privacy Policy Management View Privacy Center View Data Security Posture Management View Data Access Intelligence & Governance View Data Risk Management View Data Breach Analysis View Data Catalog View Data Lineage View Data Quality View</code> | <code>What does Securiti aim to achieve in terms of data security, privacy, and compliance risks?</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: epoch
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 10
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `bf16`: True
- `tf32`: True
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 10
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: True
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
|:-------:|:-------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|
| 0.3448 | 10 | 9.0172 | - | - | - | - | - |
| 0.6897 | 20 | 7.8791 | - | - | - | - | - |
| 1.0 | 29 | - | 0.2696 | 0.2535 | 0.2642 | 0.2317 | 0.2805 |
| 1.0345 | 30 | 6.1959 | - | - | - | - | - |
| 1.3793 | 40 | 5.1573 | - | - | - | - | - |
| 1.7241 | 50 | 3.9165 | - | - | - | - | - |
| 2.0 | 58 | - | 0.2545 | 0.2678 | 0.2693 | 0.2320 | 0.2609 |
| 2.0690 | 60 | 3.6232 | - | - | - | - | - |
| 2.4138 | 70 | 3.0077 | - | - | - | - | - |
| 2.7586 | 80 | 2.951 | - | - | - | - | - |
| 3.0 | 87 | - | 0.2663 | 0.2909 | 0.2663 | 0.2438 | 0.2677 |
| 3.1034 | 90 | 2.3699 | - | - | - | - | - |
| 3.4483 | 100 | 2.404 | - | - | - | - | - |
| 3.7931 | 110 | 1.818 | - | - | - | - | - |
| **4.0** | **116** | **-** | **0.2752** | **0.279** | **0.2888** | **0.2447** | **0.2938** |
| 4.1379 | 120 | 1.4625 | - | - | - | - | - |
| 4.4828 | 130 | 1.9295 | - | - | - | - | - |
| 4.8276 | 140 | 1.5043 | - | - | - | - | - |
| 5.0 | 145 | - | 0.2633 | 0.2684 | 0.2771 | 0.2442 | 0.2841 |
| 5.1724 | 150 | 1.0966 | - | - | - | - | - |
| 5.5172 | 160 | 1.3741 | - | - | - | - | - |
| 5.8621 | 170 | 1.132 | - | - | - | - | - |
| 6.0 | 174 | - | 0.2635 | 0.2649 | 0.2861 | 0.2399 | 0.2760 |
| 6.2069 | 180 | 0.8199 | - | - | - | - | - |
| 6.5517 | 190 | 1.0209 | - | - | - | - | - |
| 6.8966 | 200 | 1.0516 | - | - | - | - | - |
| 7.0 | 203 | - | 0.2619 | 0.2738 | 0.2654 | 0.2474 | 0.2770 |
| 7.2414 | 210 | 0.7749 | - | - | - | - | - |
| 7.5862 | 220 | 1.0583 | - | - | - | - | - |
| 7.9310 | 230 | 0.832 | - | - | - | - | - |
| 8.0 | 232 | - | 0.2652 | 0.2739 | 0.2675 | 0.2441 | 0.2725 |
| 8.2759 | 240 | 0.7005 | - | - | - | - | - |
| 8.6207 | 250 | 0.8967 | - | - | - | - | - |
| 8.9655 | 260 | 0.8263 | - | - | - | - | - |
| 9.0 | 261 | - | 0.2609 | 0.2682 | 0.2656 | 0.2401 | 0.2817 |
| 9.3103 | 270 | 0.6493 | - | - | - | - | - |
| 9.6552 | 280 | 0.7889 | - | - | - | - | - |
| 10.0 | 290 | 0.7407 | 0.2532 | 0.2733 | 0.2725 | 0.2451 | 0.2814 |
* The bold row denotes the saved checkpoint.
### Framework Versions
- Python: 3.10.14
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.31.0
- Datasets: 2.19.1
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |