File size: 25,629 Bytes
d21f609 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 |
---
base_model: BAAI/bge-base-en-v1.5
datasets: []
language:
- en
library_name: sentence-transformers
license: apache-2.0
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_ndcg@100
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:10000
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: Politics is about action. The German government has to take some
action on the issue of NSA surveillance and German privacy or it will look weak.
Interior Minister Hans-Peter Friedrich went to Washington in July but was accused
of “returning empty-handed” and having “not moved a single step forward on any
of the key points”. [1] The stonewalling by the United States provides an opportunity
for opponents to Damage Merkel’s new government as well as potentially to show
gaps between the SDP and CSU. Merkel has been invited to visit Washington at some
point in 2014 by President Obama, [2] Merkel can’t afford for her own diplomacy
to have as little result as Friedrich’s. [1] Deutsche Welle, ‘SPF, Greens slam
Interior Minister Friedrich after US surveillance talks in Washington’, dw.de,
13 July 2013, [2] Reuters, ‘Obama invites Merkel to visit during call about
trade, NATO’, 8 January 2014,
sentences:
- what was mrs griffin accused of doing
- are alcohol cigarettes dangerous
- could gmo help food production
- source_sentence: Schools such as those in the county of Harrold, TX [1] have already
introduced laws allowing teachers to carry pistols, but largely in a concealed
fashion. This therefore leaves children unawares and thus not distracted by seeing
teachers prominently carrying guns. Furthermore, with teachers carrying concealed
arms, any would-be attackers would be thrown by not knowing who to shoot first,
which would not be the case if police officers were the first on the scene. [1]
McKinley, James C., ‘In Texas School, Teachers Carry Books and Guns’, The New
York Times, 28 August 2008,
sentences:
- why are teachers allowed to carry guns?
- why is it important to prosecute
- what is victim mentality
- source_sentence: While any annexation would be mutually agreed there is no guarantee
that the whole international community would see it positively; any resistance
from groups within Lesotho and it could be a PR nightmare. Moreover the spin of
it being a humanitarian gesture is reliant on it following through and improving
conditions. If it succeeds then SA will likely be called upon to resolve other
humanitarian situations in the region such as in Swaziland.
sentences:
- why is congress power so important
- how africa is dependent on foreign aid
- should lesotho be annexed
- source_sentence: In the last 20 years, the number of people in the UK who identify
as religious has declined by 20%. This shows that religion as a whole is becoming
less important and, with it, marriage is becoming less important. (British Social
Attitudes Survey 2007)
sentences:
- why is it important for people to identify as religious
- is negotiation necessary for the government?
- does the lawyer have to be privy to mediation
- source_sentence: The ICC's ability to prosecute war criminals is both overstated
and simplistic. It has no force of its own, and must rely on its member states
to hand over criminals wanted for prosecution. This leads to cases like that of
Serbia, where wanted war criminals like Ratko Mladic are believed to have been
hidden with the complicity of the regime until finally handed over in 2011. The
absence of a force or any coercive means to bring suspects to trial also leads
to situations like that in Libya, whereby Colonel Gaddafi is wanted by the ICC
but the prosecution's case is germane if he manages his grip on power. Furthermore,
it relies on external funding to operate, and can only sustain cases so long as
financial support exists to see them through.
sentences:
- does the icc prosecute war crimes
- how to reduce phone usage
- does evolution prove that the creator did the work
model-index:
- name: SentenceTransformer based on BAAI/bge-base-en-v1.5
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.186
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.544
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.6685
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.7995
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.186
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.18133333333333332
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.13369999999999999
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.07995000000000001
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.186
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.544
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.6685
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.7995
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.4889853894775273
name: Cosine Ndcg@10
- type: cosine_ndcg@100
value: 0.5263043331639856
name: Cosine Ndcg@100
- type: cosine_mrr@10
value: 0.38976746031746196
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.39800392651408967
name: Cosine Map@100
---
# SentenceTransformer based on BAAI/bge-base-en-v1.5
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
- **Language:** en
- **License:** apache-2.0
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("MugheesAwan11/bge-base-arguana-dataset-10k-2k-e1")
# Run inference
sentences = [
"The ICC's ability to prosecute war criminals is both overstated and simplistic. It has no force of its own, and must rely on its member states to hand over criminals wanted for prosecution. This leads to cases like that of Serbia, where wanted war criminals like Ratko Mladic are believed to have been hidden with the complicity of the regime until finally handed over in 2011. The absence of a force or any coercive means to bring suspects to trial also leads to situations like that in Libya, whereby Colonel Gaddafi is wanted by the ICC but the prosecution's case is germane if he manages his grip on power. Furthermore, it relies on external funding to operate, and can only sustain cases so long as financial support exists to see them through.",
'does the icc prosecute war crimes',
'does evolution prove that the creator did the work',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Information Retrieval
* Dataset: `dim_768`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:----------|
| cosine_accuracy@1 | 0.186 |
| cosine_accuracy@3 | 0.544 |
| cosine_accuracy@5 | 0.6685 |
| cosine_accuracy@10 | 0.7995 |
| cosine_precision@1 | 0.186 |
| cosine_precision@3 | 0.1813 |
| cosine_precision@5 | 0.1337 |
| cosine_precision@10 | 0.08 |
| cosine_recall@1 | 0.186 |
| cosine_recall@3 | 0.544 |
| cosine_recall@5 | 0.6685 |
| cosine_recall@10 | 0.7995 |
| cosine_ndcg@10 | 0.489 |
| cosine_ndcg@100 | 0.5263 |
| cosine_mrr@10 | 0.3898 |
| **cosine_map@100** | **0.398** |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 10,000 training samples
* Columns: <code>positive</code> and <code>anchor</code>
* Approximate statistics based on the first 1000 samples:
| | positive | anchor |
|:--------|:-------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 29 tokens</li><li>mean: 203.36 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 9.5 tokens</li><li>max: 25 tokens</li></ul> |
* Samples:
| positive | anchor |
|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------|
| <code>The act of killing is emotionally damaging To actually be involved in the death of another person is an incredibly traumatic experience. Soldiers coming back from war often suffer from ‘post-traumatic stress disorder’ which suggests that being in a situation in which you have to take another persons life has a long lasting impact on your mental health. This is also true for people who are not directly involved in the act of killing. For instance, the people who worked on developing the atomic bomb described an incredible guilt for what they had created even though they were not involved in the decision to drop the bombs. The same traumatic experiences would likely affect the person responsible for pulling the lever.</code> | <code>what is a killing and how can it affect the brain?</code> |
| <code>Deal with Corruption Guinea-Bissau’s institutions have become too corrupt to deal with the drug problem and require support. The police, army and judiciary have all been implicated in the drug trade. The involvement of state officials in drug trafficking means that criminals are not prosecuted against. When two soldiers and a civilian were apprehended with 635kg (worth £25.4 million in 2013), they were detained and then immediately released with Colonel Arsenio Blade claiming ‘They were on the road hitching a ride’1. Judges are often bribed or sent death threats when faced with sentencing those involved in the drug trade. The USA has provided restructuring assistance to institutions which have reduced corruption, such as in the Mexico Merida Initiative, and could do the same with Guinea Bissau. 1) Vulliamy,E. ‘How a tiny West African country became the world’s first narco state’, The Guardian, 9 March 2008 2) Corcoran,P. ‘Mexico Judicial Reforms Go Easy On Corrupt Judges’, In Sight Crime, 16 February 2012</code> | <code>what has changed guinea bissau</code> |
| <code>Western countries already benefit from extremely liberal laws. The USA is at present far better than most countries in their respect and regard for civil liberties. New security measures do not greatly compromise this liberty, and the US measures are at the very least comparable with similar measures already in effect in other democratic developed countries, e.g. Spain and the UK, which have had to cope with domestic terrorism for far longer than the USA. The facts speak for themselves – the USA enjoys a healthy western-liberalism the likes of which most of the world’s people cannot even conceive of. The issue of the erosion of a few minor liberties of (states like the US’s) citizens should be overlooked in favour of the much greater issue of protecting the very existence of that state. [1] [1] Zetter, Kim, ‘The Patriot Act Is Your Friend’, Wired, 24 February 2004, , accessed 9 September 2011</code> | <code>which political philosophy is true about the usa?</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768
],
"matryoshka_weights": [
1
],
"n_dims_per_step": -1
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: epoch
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 1
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `bf16`: True
- `tf32`: True
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: True
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss | dim_768_cosine_map@100 |
|:-------:|:-------:|:-------------:|:----------------------:|
| 0.0319 | 10 | 0.5613 | - |
| 0.0639 | 20 | 0.4543 | - |
| 0.0958 | 30 | 0.2893 | - |
| 0.1278 | 40 | 0.2127 | - |
| 0.1597 | 50 | 0.1528 | - |
| 0.1917 | 60 | 0.1689 | - |
| 0.2236 | 70 | 0.1812 | - |
| 0.2556 | 80 | 0.1531 | - |
| 0.2875 | 90 | 0.1685 | - |
| 0.3195 | 100 | 0.1666 | - |
| 0.3514 | 110 | 0.1504 | - |
| 0.3834 | 120 | 0.139 | - |
| 0.4153 | 130 | 0.1174 | - |
| 0.4473 | 140 | 0.1602 | - |
| 0.4792 | 150 | 0.178 | - |
| 0.5112 | 160 | 0.1481 | - |
| 0.5431 | 170 | 0.1145 | - |
| 0.5751 | 180 | 0.1502 | - |
| 0.6070 | 190 | 0.1189 | - |
| 0.6390 | 200 | 0.1648 | - |
| 0.6709 | 210 | 0.2004 | - |
| 0.7029 | 220 | 0.1565 | - |
| 0.7348 | 230 | 0.1447 | - |
| 0.7668 | 240 | 0.1411 | - |
| 0.7987 | 250 | 0.1326 | - |
| 0.8307 | 260 | 0.1562 | - |
| 0.8626 | 270 | 0.1571 | - |
| 0.8946 | 280 | 0.1211 | - |
| 0.9265 | 290 | 0.1399 | - |
| 0.9585 | 300 | 0.1884 | - |
| 0.9904 | 310 | 0.1537 | - |
| **1.0** | **313** | **-** | **0.398** |
* The bold row denotes the saved checkpoint.
### Framework Versions
- Python: 3.10.14
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.31.0
- Datasets: 2.19.1
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |