Object Detection
English
biology
medical
admin commited on
Commit
994a8ea
1 Parent(s): e91cd7d
Files changed (2) hide show
  1. .gitignore +170 -0
  2. README.md +30 -0
.gitignore ADDED
@@ -0,0 +1,170 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Byte-compiled / optimized / DLL files
2
+ */__pycache__/*
3
+ */*/__pycache__/*
4
+ */__init__.py
5
+ */*/__init__.py
6
+ images/*
7
+ *.py[cod]
8
+ *$py.class
9
+ input/*
10
+ output/*
11
+ images/*
12
+ .vscode/*
13
+ test.py
14
+
15
+ # C extensions
16
+ *.so
17
+
18
+ # Distribution / packaging
19
+ .Python
20
+ build/
21
+ develop-eggs/
22
+ dist/
23
+ downloads/
24
+ eggs/
25
+ .eggs/
26
+ lib/
27
+ lib64/
28
+ parts/
29
+ sdist/
30
+ var/
31
+ wheels/
32
+ share/python-wheels/
33
+ *.egg-info/
34
+ .installed.cfg
35
+ *.egg
36
+ MANIFEST
37
+
38
+ # PyInstaller
39
+ # Usually these files are written by a python script from a template
40
+ # before PyInstaller builds the exe, so as to inject date/other infos into it.
41
+ *.manifest
42
+ *.spec
43
+
44
+ # Installer logs
45
+ pip-log.txt
46
+ pip-delete-this-directory.txt
47
+
48
+ # Unit test / coverage reports
49
+ htmlcov/
50
+ .tox/
51
+ .nox/
52
+ .coverage
53
+ .coverage.*
54
+ .cache
55
+ nosetests.xml
56
+ coverage.xml
57
+ *.cover
58
+ *.py,cover
59
+ .hypothesis/
60
+ .pytest_cache/
61
+ cover/
62
+
63
+ # Translations
64
+ *.mo
65
+ *.pot
66
+
67
+ # Django stuff:
68
+ *.log
69
+ local_settings.py
70
+ db.sqlite3
71
+ db.sqlite3-journal
72
+
73
+ # Flask stuff:
74
+ instance/
75
+ .webassets-cache
76
+
77
+ # Scrapy stuff:
78
+ .scrapy
79
+
80
+ # Sphinx documentation
81
+ docs/_build/
82
+
83
+ # PyBuilder
84
+ .pybuilder/
85
+ target/
86
+
87
+ # Jupyter Notebook
88
+ .ipynb_checkpoints
89
+
90
+ # IPython
91
+ profile_default/
92
+ ipython_config.py
93
+
94
+ # pyenv
95
+ # For a library or package, you might want to ignore these files since the code is
96
+ # intended to run in multiple environments; otherwise, check them in:
97
+ # .python-version
98
+
99
+ # pipenv
100
+ # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
101
+ # However, in case of collaboration, if having platform-specific dependencies or dependencies
102
+ # having no cross-platform support, pipenv may install dependencies that don't work, or not
103
+ # install all needed dependencies.
104
+ #Pipfile.lock
105
+
106
+ # poetry
107
+ # Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
108
+ # This is especially recommended for binary packages to ensure reproducibility, and is more
109
+ # commonly ignored for libraries.
110
+ # https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
111
+ #poetry.lock
112
+
113
+ # pdm
114
+ # Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
115
+ #pdm.lock
116
+ # pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
117
+ # in version control.
118
+ # https://pdm.fming.dev/#use-with-ide
119
+ .pdm.toml
120
+
121
+ # PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
122
+ __pypackages__/
123
+
124
+ # Celery stuff
125
+ celerybeat-schedule
126
+ celerybeat.pid
127
+
128
+ # SageMath parsed files
129
+ *.sage.py
130
+
131
+ # Environments
132
+ .env
133
+ .venv
134
+ env/
135
+ venv/
136
+ ENV/
137
+ env.bak/
138
+ venv.bak/
139
+
140
+ # Spyder project settings
141
+ .spyderproject
142
+ .spyproject
143
+
144
+ # Rope project settings
145
+ .ropeproject
146
+
147
+ # mkdocs documentation
148
+ /site
149
+
150
+ # mypy
151
+ .mypy_cache/
152
+ .dmypy.json
153
+ dmypy.json
154
+
155
+ # Pyre type checker
156
+ .pyre/
157
+
158
+ # pytype static type analyzer
159
+ .pytype/
160
+
161
+ # Cython debug symbols
162
+ cython_debug/
163
+
164
+ # PyCharm
165
+ # JetBrains specific template is maintained in a separate JetBrains.gitignore that can
166
+ # be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
167
+ # and can be added to the global gitignore or merged into this file. For a more nuclear
168
+ # option (not recommended) you can uncomment the following to ignore the entire idea folder.
169
+ #.idea/
170
+ rename.sh
README.md CHANGED
@@ -1,3 +1,33 @@
1
  ---
2
  license: mit
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: mit
3
+ datasets:
4
+ - imdb
5
+ language:
6
+ - en
7
+ metrics:
8
+ - accuracy
9
+ pipeline_tag: object-detection
10
+ tags:
11
+ - biology
12
+ - medical
13
  ---
14
+
15
+ # 简介 Intro
16
+ 在现实场景进行年龄和性别识别是一项充满挑战的任务:除了环境条件的多变、姿势复杂和图像质量的差异外,还存在面部部分或完全遮挡的情况。MiVOLO 是一种简单的方法,利用最新的视觉 Transformer 进行年龄和性别估计。该方法将这两个任务整合到一个统一的双输入/输出模型中,不仅利用了面部信息,还利用了人物图像数据。这提高了模型的泛化能力,使其能够在图像中面部不可见时依然能够提供令人满意的结果。为了评估该模型,在四个流行的基准数据集上进行了实验,并取得了最先进的性能,同时展示了实时处理的能力。此外,还基于 Open Images 数据集中的图像引入了一种新的基准数据集。该基准数据集的地面真实标注由人类标注者精心生成,并通过智能汇总投票结果来保证高准确性。此外,将模型的年龄识别性能与人类水平的准确性进行了比较,并展示了在大多数年龄范围内明显优于人类的表现。最后,向公众提供了对模型的访问权限,以及用于验证和推理的代码。此外,还为使用的数据集提供了额外的注释,并介绍了新的基准数据集。
17
+
18
+ Conducting age and gender recognition in real-world scenarios is a task replete with challenges: not only are there variable environmental conditions, complex poses, and differences in image quality, but there are also situations where the face is partially or fully obscured. MiVOLO is a straightforward approach that leverages the latest visual Transformer for age and gender estimation. This method integrates these two tasks into a unified dual-input/output model, utilizing not only facial information but also full-body image data. This enhances the model's generalization capabilities, allowing it to provide satisfactory results even when the face is not visible in the image. To evaluate the model, experiments were conducted on four popular benchmark datasets, achieving state-of-the-art performance while also demonstrating the ability to process in real-time. Additionally, a new benchmark dataset was introduced based on images from the Open Images dataset. The ground truth annotations of this benchmark were meticulously created by human annotators and ensured high accuracy through intelligent aggregation of voting results. Furthermore, the model's age recognition performance was compared with human-level accuracy, showing a clear superiority over humans across most age ranges. Finally, public access to the model was provided, along with code for verification and inference. Moreover, additional annotations for the datasets used were supplied, and the new benchmark dataset was introduced.
19
+
20
+ ## 使用 Usage
21
+ ```python
22
+ from modelscope import snapshot_download
23
+ model_dir = snapshot_download("MuGeminorum/MiVOLO")
24
+ ```
25
+
26
+ ## 下载 Clone with HTTP
27
+ ```bash
28
+ git clone [email protected]:MuGeminorum/MiVOLO
29
+ cd MiVOLO
30
+ ```
31
+
32
+ ## 参考引用 Reference
33
+ [1] <a href="https://arxiv.org/pdf/2307.04616">MiVOLO: Multi-input Transformer for Age and Gender Estimation</a>