MrDivakaruni commited on
Commit
fd84a4a
·
1 Parent(s): 04a7edf

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -30.79 +/- 8.57
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c66a10b8b42a9db07c61e12c2c2d96fb424d58bca46ad620dad9979e30a52164
3
+ size 108071
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7ff953b064c0>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc_data object at 0x7ff953afbc60>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 4,
44
+ "num_timesteps": 1000000,
45
+ "_total_timesteps": 1000000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1675582635702958877,
50
+ "learning_rate": 0.0007,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAv6ndPsgcYDzUBBY/v6ndPsgcYDzUBBY/v6ndPsgcYDzUBBY/v6ndPsgcYDzUBBY/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAADzC6P4uRu7/bnGs/6WPDP+azPb/17pS+zLBsP+xVpj7KO4c/9iQ9P/3LAr/eNUI/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAC/qd0+yBxgPNQEFj+E0Yw8P86cOZMiJjy/qd0+yBxgPNQEFj+E0Yw8P86cOZMiJjy/qd0+yBxgPNQEFj+E0Yw8P86cOZMiJjy/qd0+yBxgPNQEFj+E0Yw8P86cOZMiJjyUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[0.43293568 0.01367874 0.5860112 ]\n [0.43293568 0.01367874 0.5860112 ]\n [0.43293568 0.01367874 0.5860112 ]\n [0.43293568 0.01367874 0.5860112 ]]",
60
+ "desired_goal": "[[ 1.4545916 -1.4653791 0.9203622 ]\n [ 1.5264865 -0.7410263 -0.2908856 ]\n [ 0.9245727 0.32487428 1.0565121 ]\n [ 0.7388452 -0.5109251 0.75863445]]",
61
+ "observation": "[[4.3293568e-01 1.3678737e-02 5.8601117e-01 1.7189749e-02 2.9908304e-04\n 1.0140079e-02]\n [4.3293568e-01 1.3678737e-02 5.8601117e-01 1.7189749e-02 2.9908304e-04\n 1.0140079e-02]\n [4.3293568e-01 1.3678737e-02 5.8601117e-01 1.7189749e-02 2.9908304e-04\n 1.0140079e-02]\n [4.3293568e-01 1.3678737e-02 5.8601117e-01 1.7189749e-02 2.9908304e-04\n 1.0140079e-02]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAsHhDvesuCj7orBk+RLcFvTOBmDrxdUg+3wxAvFYMVj3A35U9BQpfPI7dmTw/HGc9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[-0.04772252 0.1349446 0.15007365]\n [-0.03264548 0.00116352 0.19576241]\n [-0.01172182 0.05225786 0.07318068]\n [ 0.01361323 0.0187824 0.05642342]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.0,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI/Knx0k3SFcCUhpRSlIwBbJRLMowBdJRHQKfc5XKbKA91fZQoaAZoCWgPQwgzNJ4I4rz+v5SGlFKUaBVLMmgWR0Cn3KkKeCkHdX2UKGgGaAloD0MI+kMzT66p9L+UhpRSlGgVSzJoFkdAp9xsvysjmnV9lChoBmgJaA9DCM2SADW1zAjAlIaUUpRoFUsyaBZHQKfcL1FpfyB1fZQoaAZoCWgPQwjdRZiiXJrqv5SGlFKUaBVLMmgWR0Cn3fmuDBdldX2UKGgGaAloD0MI/mX35GFh9L+UhpRSlGgVSzJoFkdAp929Q/HHWHV9lChoBmgJaA9DCKG5TiMtVf2/lIaUUpRoFUsyaBZHQKfdgUSIxg11fZQoaAZoCWgPQwhTBaOSOqEHwJSGlFKUaBVLMmgWR0Cn3UPYWcjJdX2UKGgGaAloD0MIfLYODva2EMCUhpRSlGgVSzJoFkdAp98LuF6Av3V9lChoBmgJaA9DCNW0i2mmixLAlIaUUpRoFUsyaBZHQKfez114gRt1fZQoaAZoCWgPQwiuKCUEq2oQwJSGlFKUaBVLMmgWR0Cn3pMlLOAzdX2UKGgGaAloD0MISRPvAE8aAcCUhpRSlGgVSzJoFkdAp95VoL5RCXV9lChoBmgJaA9DCHtq9dVVAf6/lIaUUpRoFUsyaBZHQKfgHMWXTmZ1fZQoaAZoCWgPQwhTswdagWH3v5SGlFKUaBVLMmgWR0Cn3+CAMDwIdX2UKGgGaAloD0MIr0M1JVmHAMCUhpRSlGgVSzJoFkdAp9+kMspXqHV9lChoBmgJaA9DCD8BFCNLhgXAlIaUUpRoFUsyaBZHQKffZr1uivh1fZQoaAZoCWgPQwgEHhhA+FDpv5SGlFKUaBVLMmgWR0Cn4SsJ6Y3OdX2UKGgGaAloD0MIeouH9xzY4r+UhpRSlGgVSzJoFkdAp+DvdIoVmHV9lChoBmgJaA9DCL/S+fAsIQzAlIaUUpRoFUsyaBZHQKfgtCswL3N1fZQoaAZoCWgPQwiFCDiEKhURwJSGlFKUaBVLMmgWR0Cn4HeFcpsodX2UKGgGaAloD0MIEDy+vWuQBMCUhpRSlGgVSzJoFkdAp+JLrTpgTnV9lChoBmgJaA9DCGkaFM0D2BHAlIaUUpRoFUsyaBZHQKfiD0dRzil1fZQoaAZoCWgPQwixprIo7CL1v5SGlFKUaBVLMmgWR0Cn4dLxI8QqdX2UKGgGaAloD0MI06QUdHsJDMCUhpRSlGgVSzJoFkdAp+GVdiUgS3V9lChoBmgJaA9DCOl/uRYtQPm/lIaUUpRoFUsyaBZHQKfjVSGahHt1fZQoaAZoCWgPQwg7yOvBpIgUwJSGlFKUaBVLMmgWR0Cn4xjOC5EudX2UKGgGaAloD0MIQPuRIjLsCcCUhpRSlGgVSzJoFkdAp+LcdzXBg3V9lChoBmgJaA9DCF3dsdgm5RTAlIaUUpRoFUsyaBZHQKfin5/LDAJ1fZQoaAZoCWgPQwgHCVG+oAX+v5SGlFKUaBVLMmgWR0Cn5G2EK3NLdX2UKGgGaAloD0MItRg8TPsmGsCUhpRSlGgVSzJoFkdAp+QxHVf/m3V9lChoBmgJaA9DCKj/rPnxtwDAlIaUUpRoFUsyaBZHQKfj9KT0QK91fZQoaAZoCWgPQwjY8V8gCJASwJSGlFKUaBVLMmgWR0Cn47cbR4QjdX2UKGgGaAloD0MI6xuY3CgSBcCUhpRSlGgVSzJoFkdAp+V9vqC6H3V9lChoBmgJaA9DCHXJOEayVyrAlIaUUpRoFUsyaBZHQKflQWrwOON1fZQoaAZoCWgPQwh5c7hWe1jqv5SGlFKUaBVLMmgWR0Cn5QUahpQDdX2UKGgGaAloD0MIgAwdO6gED8CUhpRSlGgVSzJoFkdAp+THgxagVXV9lChoBmgJaA9DCPNYMzLIXe6/lIaUUpRoFUsyaBZHQKfm9Hf/FR51fZQoaAZoCWgPQwjHEAAce1YEwJSGlFKUaBVLMmgWR0Cn5rkfDDTCdX2UKGgGaAloD0MIJbA5B89E+7+UhpRSlGgVSzJoFkdAp+Z9vES/TXV9lChoBmgJaA9DCPhSeNDsmg/AlIaUUpRoFUsyaBZHQKfmQR8MNMJ1fZQoaAZoCWgPQwi63ct9chT/v5SGlFKUaBVLMmgWR0Cn6MKqfe1sdX2UKGgGaAloD0MIYMrAAS1tEsCUhpRSlGgVSzJoFkdAp+iHJ/5Ly3V9lChoBmgJaA9DCFZl3xXBf/W/lIaUUpRoFUsyaBZHQKfoS6ij+Jh1fZQoaAZoCWgPQwg7GRwlr+4EwJSGlFKUaBVLMmgWR0Cn6BBcqvvCdX2UKGgGaAloD0MIkJ4ih4jb8r+UhpRSlGgVSzJoFkdAp+qEafjCHnV9lChoBmgJaA9DCOT09XzNshTAlIaUUpRoFUsyaBZHQKfqSQA+6iF1fZQoaAZoCWgPQwgpzlFHx7UAwJSGlFKUaBVLMmgWR0Cn6g20Z3s5dX2UKGgGaAloD0MI5LuUumT8DsCUhpRSlGgVSzJoFkdAp+nQ6fapP3V9lChoBmgJaA9DCMxB0NGqhhDAlIaUUpRoFUsyaBZHQKfsa6BiCrd1fZQoaAZoCWgPQwgHzhlR2jsHwJSGlFKUaBVLMmgWR0Cn7DA/LTx5dX2UKGgGaAloD0MIm+jzUUacAcCUhpRSlGgVSzJoFkdAp+v05S3sonV9lChoBmgJaA9DCGWMD7OXbfC/lIaUUpRoFUsyaBZHQKfruFA3T/h1fZQoaAZoCWgPQwiW58HdWSshwJSGlFKUaBVLMmgWR0Cn7kO1v2oOdX2UKGgGaAloD0MIUHPyIhPw+b+UhpRSlGgVSzJoFkdAp+4IOFxn4HV9lChoBmgJaA9DCIhnCTICmhHAlIaUUpRoFUsyaBZHQKftzdSEUTN1fZQoaAZoCWgPQwhLeEKvP0n6v5SGlFKUaBVLMmgWR0Cn7ZFnyup0dX2UKGgGaAloD0MIiSmRRC+j8r+UhpRSlGgVSzJoFkdAp/Ail7+kxnV9lChoBmgJaA9DCBhEpKZdjAfAlIaUUpRoFUsyaBZHQKfv50pVjqh1fZQoaAZoCWgPQwiIug9AapPzv5SGlFKUaBVLMmgWR0Cn76v0h/y5dX2UKGgGaAloD0MIlE+PbRnwAMCUhpRSlGgVSzJoFkdAp+9vaHsTnXV9lChoBmgJaA9DCPkRv2INVwfAlIaUUpRoFUsyaBZHQKfxVQqI7/51fZQoaAZoCWgPQwhz843onvUOwJSGlFKUaBVLMmgWR0Cn8RiZv1lHdX2UKGgGaAloD0MIQzo8hPFT7L+UhpRSlGgVSzJoFkdAp/DcWM0gsHV9lChoBmgJaA9DCC2wx0RKcwrAlIaUUpRoFUsyaBZHQKfwns2vStx1fZQoaAZoCWgPQwisVib8Ur/2v5SGlFKUaBVLMmgWR0Cn8nFpfx+bdX2UKGgGaAloD0MIcHmsGRmECcCUhpRSlGgVSzJoFkdAp/I1D6WPcXV9lChoBmgJaA9DCObOTDCcqwXAlIaUUpRoFUsyaBZHQKfx+M6RyOt1fZQoaAZoCWgPQwg4S8lyEkoPwJSGlFKUaBVLMmgWR0Cn8btSZSeidX2UKGgGaAloD0MIKeeLvRffAMCUhpRSlGgVSzJoFkdAp/N9uNxVAHV9lChoBmgJaA9DCNZz0vvG1w/AlIaUUpRoFUsyaBZHQKfzQW2PT5R1fZQoaAZoCWgPQwiUT49tGbABwJSGlFKUaBVLMmgWR0Cn8wUwJw85dX2UKGgGaAloD0MIya60jNR7AsCUhpRSlGgVSzJoFkdAp/LH0RODa3V9lChoBmgJaA9DCN20Gachqvu/lIaUUpRoFUsyaBZHQKf0mJqqOtJ1fZQoaAZoCWgPQwhgysABLT0qwJSGlFKUaBVLMmgWR0Cn9F0CRwIddX2UKGgGaAloD0MIj46rkV3JI8CUhpRSlGgVSzJoFkdAp/Qgf8uSOnV9lChoBmgJaA9DCBMn9zsUVRXAlIaUUpRoFUsyaBZHQKfz4uwosqd1fZQoaAZoCWgPQwgOvjCZKiAswJSGlFKUaBVLMmgWR0Cn9a44ACGOdX2UKGgGaAloD0MIAK358ZcWDsCUhpRSlGgVSzJoFkdAp/Vx5C4SYnV9lChoBmgJaA9DCHcwYp8ASvG/lIaUUpRoFUsyaBZHQKf1NZPl+3J1fZQoaAZoCWgPQwg0K9uHvLUmwJSGlFKUaBVLMmgWR0Cn9PgaWHDadX2UKGgGaAloD0MI/cBVnkDUMsCUhpRSlGgVSzJoFkdAp/bYrc0tRXV9lChoBmgJaA9DCA+3Q8NiFAPAlIaUUpRoFUsyaBZHQKf2nFZxJd11fZQoaAZoCWgPQwg74SU49cH2v5SGlFKUaBVLMmgWR0Cn9mAI6bONdX2UKGgGaAloD0MIt3wkJT2AO8CUhpRSlGgVSzJoFkdAp/YifSQYDXV9lChoBmgJaA9DCK4SLA5nijPAlIaUUpRoFUsyaBZHQKf32nLJSzh1fZQoaAZoCWgPQwjrO78oQYc7wJSGlFKUaBVLMmgWR0Cn954bS7XhdX2UKGgGaAloD0MISaKXUSyrQcCUhpRSlGgVSzJoFkdAp/dhysCDEnV9lChoBmgJaA9DCCApIsMqXj7AlIaUUpRoFUsyaBZHQKf3JE5Qxet1fZQoaAZoCWgPQwiOeLKbGbk9wJSGlFKUaBVLMmgWR0Cn+OcDSw4bdX2UKGgGaAloD0MI3lflQuVfOMCUhpRSlGgVSzJoFkdAp/iqqMm4RXV9lChoBmgJaA9DCHeDaK1oOz/AlIaUUpRoFUsyaBZHQKf4bk+5e7d1fZQoaAZoCWgPQwgwndZtUKsqwJSGlFKUaBVLMmgWR0Cn+DDSofjkdX2UKGgGaAloD0MIYtwNorWyHsCUhpRSlGgVSzJoFkdAp/n/yRSxaHV9lChoBmgJaA9DCJeMYyR7BCzAlIaUUpRoFUsyaBZHQKf5w3dbgTB1fZQoaAZoCWgPQwguHt5zYFkjwJSGlFKUaBVLMmgWR0Cn+Ycma6SUdX2UKGgGaAloD0MIqUvGMZL9O8CUhpRSlGgVSzJoFkdAp/lJtNzr/3V9lChoBmgJaA9DCFt5yf/klzDAlIaUUpRoFUsyaBZHQKf7DHpbD/F1fZQoaAZoCWgPQwjeOCnMeyJEwJSGlFKUaBVLMmgWR0Cn+tAogFHKdX2UKGgGaAloD0MIqRYRxeTrQ8CUhpRSlGgVSzJoFkdAp/qT5ylvZXV9lChoBmgJaA9DCDij5qvkkyfAlIaUUpRoFUsyaBZHQKf6VnBciW51ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 50000,
87
+ "n_steps": 5,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
+ "max_grad_norm": 0.5,
93
+ "normalize_advantage": false
94
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bd8c1606b4d843864aec9c78f3b8b81e54f50c26a6cef602f91fbe37e5322c63
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6e69698241f5282cbb7df0b06e5949c88b744a8ff25b871a175346c18ff03b08
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7ff953b064c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7ff953afbc60>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675582635702958877, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAv6ndPsgcYDzUBBY/v6ndPsgcYDzUBBY/v6ndPsgcYDzUBBY/v6ndPsgcYDzUBBY/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAADzC6P4uRu7/bnGs/6WPDP+azPb/17pS+zLBsP+xVpj7KO4c/9iQ9P/3LAr/eNUI/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAC/qd0+yBxgPNQEFj+E0Yw8P86cOZMiJjy/qd0+yBxgPNQEFj+E0Yw8P86cOZMiJjy/qd0+yBxgPNQEFj+E0Yw8P86cOZMiJjy/qd0+yBxgPNQEFj+E0Yw8P86cOZMiJjyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.43293568 0.01367874 0.5860112 ]\n [0.43293568 0.01367874 0.5860112 ]\n [0.43293568 0.01367874 0.5860112 ]\n [0.43293568 0.01367874 0.5860112 ]]", "desired_goal": "[[ 1.4545916 -1.4653791 0.9203622 ]\n [ 1.5264865 -0.7410263 -0.2908856 ]\n [ 0.9245727 0.32487428 1.0565121 ]\n [ 0.7388452 -0.5109251 0.75863445]]", "observation": "[[4.3293568e-01 1.3678737e-02 5.8601117e-01 1.7189749e-02 2.9908304e-04\n 1.0140079e-02]\n [4.3293568e-01 1.3678737e-02 5.8601117e-01 1.7189749e-02 2.9908304e-04\n 1.0140079e-02]\n [4.3293568e-01 1.3678737e-02 5.8601117e-01 1.7189749e-02 2.9908304e-04\n 1.0140079e-02]\n [4.3293568e-01 1.3678737e-02 5.8601117e-01 1.7189749e-02 2.9908304e-04\n 1.0140079e-02]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAsHhDvesuCj7orBk+RLcFvTOBmDrxdUg+3wxAvFYMVj3A35U9BQpfPI7dmTw/HGc9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.04772252 0.1349446 0.15007365]\n [-0.03264548 0.00116352 0.19576241]\n [-0.01172182 0.05225786 0.07318068]\n [ 0.01361323 0.0187824 0.05642342]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI/Knx0k3SFcCUhpRSlIwBbJRLMowBdJRHQKfc5XKbKA91fZQoaAZoCWgPQwgzNJ4I4rz+v5SGlFKUaBVLMmgWR0Cn3KkKeCkHdX2UKGgGaAloD0MI+kMzT66p9L+UhpRSlGgVSzJoFkdAp9xsvysjmnV9lChoBmgJaA9DCM2SADW1zAjAlIaUUpRoFUsyaBZHQKfcL1FpfyB1fZQoaAZoCWgPQwjdRZiiXJrqv5SGlFKUaBVLMmgWR0Cn3fmuDBdldX2UKGgGaAloD0MI/mX35GFh9L+UhpRSlGgVSzJoFkdAp929Q/HHWHV9lChoBmgJaA9DCKG5TiMtVf2/lIaUUpRoFUsyaBZHQKfdgUSIxg11fZQoaAZoCWgPQwhTBaOSOqEHwJSGlFKUaBVLMmgWR0Cn3UPYWcjJdX2UKGgGaAloD0MIfLYODva2EMCUhpRSlGgVSzJoFkdAp98LuF6Av3V9lChoBmgJaA9DCNW0i2mmixLAlIaUUpRoFUsyaBZHQKfez114gRt1fZQoaAZoCWgPQwiuKCUEq2oQwJSGlFKUaBVLMmgWR0Cn3pMlLOAzdX2UKGgGaAloD0MISRPvAE8aAcCUhpRSlGgVSzJoFkdAp95VoL5RCXV9lChoBmgJaA9DCHtq9dVVAf6/lIaUUpRoFUsyaBZHQKfgHMWXTmZ1fZQoaAZoCWgPQwhTswdagWH3v5SGlFKUaBVLMmgWR0Cn3+CAMDwIdX2UKGgGaAloD0MIr0M1JVmHAMCUhpRSlGgVSzJoFkdAp9+kMspXqHV9lChoBmgJaA9DCD8BFCNLhgXAlIaUUpRoFUsyaBZHQKffZr1uivh1fZQoaAZoCWgPQwgEHhhA+FDpv5SGlFKUaBVLMmgWR0Cn4SsJ6Y3OdX2UKGgGaAloD0MIeouH9xzY4r+UhpRSlGgVSzJoFkdAp+DvdIoVmHV9lChoBmgJaA9DCL/S+fAsIQzAlIaUUpRoFUsyaBZHQKfgtCswL3N1fZQoaAZoCWgPQwiFCDiEKhURwJSGlFKUaBVLMmgWR0Cn4HeFcpsodX2UKGgGaAloD0MIEDy+vWuQBMCUhpRSlGgVSzJoFkdAp+JLrTpgTnV9lChoBmgJaA9DCGkaFM0D2BHAlIaUUpRoFUsyaBZHQKfiD0dRzil1fZQoaAZoCWgPQwixprIo7CL1v5SGlFKUaBVLMmgWR0Cn4dLxI8QqdX2UKGgGaAloD0MI06QUdHsJDMCUhpRSlGgVSzJoFkdAp+GVdiUgS3V9lChoBmgJaA9DCOl/uRYtQPm/lIaUUpRoFUsyaBZHQKfjVSGahHt1fZQoaAZoCWgPQwg7yOvBpIgUwJSGlFKUaBVLMmgWR0Cn4xjOC5EudX2UKGgGaAloD0MIQPuRIjLsCcCUhpRSlGgVSzJoFkdAp+LcdzXBg3V9lChoBmgJaA9DCF3dsdgm5RTAlIaUUpRoFUsyaBZHQKfin5/LDAJ1fZQoaAZoCWgPQwgHCVG+oAX+v5SGlFKUaBVLMmgWR0Cn5G2EK3NLdX2UKGgGaAloD0MItRg8TPsmGsCUhpRSlGgVSzJoFkdAp+QxHVf/m3V9lChoBmgJaA9DCKj/rPnxtwDAlIaUUpRoFUsyaBZHQKfj9KT0QK91fZQoaAZoCWgPQwjY8V8gCJASwJSGlFKUaBVLMmgWR0Cn47cbR4QjdX2UKGgGaAloD0MI6xuY3CgSBcCUhpRSlGgVSzJoFkdAp+V9vqC6H3V9lChoBmgJaA9DCHXJOEayVyrAlIaUUpRoFUsyaBZHQKflQWrwOON1fZQoaAZoCWgPQwh5c7hWe1jqv5SGlFKUaBVLMmgWR0Cn5QUahpQDdX2UKGgGaAloD0MIgAwdO6gED8CUhpRSlGgVSzJoFkdAp+THgxagVXV9lChoBmgJaA9DCPNYMzLIXe6/lIaUUpRoFUsyaBZHQKfm9Hf/FR51fZQoaAZoCWgPQwjHEAAce1YEwJSGlFKUaBVLMmgWR0Cn5rkfDDTCdX2UKGgGaAloD0MIJbA5B89E+7+UhpRSlGgVSzJoFkdAp+Z9vES/TXV9lChoBmgJaA9DCPhSeNDsmg/AlIaUUpRoFUsyaBZHQKfmQR8MNMJ1fZQoaAZoCWgPQwi63ct9chT/v5SGlFKUaBVLMmgWR0Cn6MKqfe1sdX2UKGgGaAloD0MIYMrAAS1tEsCUhpRSlGgVSzJoFkdAp+iHJ/5Ly3V9lChoBmgJaA9DCFZl3xXBf/W/lIaUUpRoFUsyaBZHQKfoS6ij+Jh1fZQoaAZoCWgPQwg7GRwlr+4EwJSGlFKUaBVLMmgWR0Cn6BBcqvvCdX2UKGgGaAloD0MIkJ4ih4jb8r+UhpRSlGgVSzJoFkdAp+qEafjCHnV9lChoBmgJaA9DCOT09XzNshTAlIaUUpRoFUsyaBZHQKfqSQA+6iF1fZQoaAZoCWgPQwgpzlFHx7UAwJSGlFKUaBVLMmgWR0Cn6g20Z3s5dX2UKGgGaAloD0MI5LuUumT8DsCUhpRSlGgVSzJoFkdAp+nQ6fapP3V9lChoBmgJaA9DCMxB0NGqhhDAlIaUUpRoFUsyaBZHQKfsa6BiCrd1fZQoaAZoCWgPQwgHzhlR2jsHwJSGlFKUaBVLMmgWR0Cn7DA/LTx5dX2UKGgGaAloD0MIm+jzUUacAcCUhpRSlGgVSzJoFkdAp+v05S3sonV9lChoBmgJaA9DCGWMD7OXbfC/lIaUUpRoFUsyaBZHQKfruFA3T/h1fZQoaAZoCWgPQwiW58HdWSshwJSGlFKUaBVLMmgWR0Cn7kO1v2oOdX2UKGgGaAloD0MIUHPyIhPw+b+UhpRSlGgVSzJoFkdAp+4IOFxn4HV9lChoBmgJaA9DCIhnCTICmhHAlIaUUpRoFUsyaBZHQKftzdSEUTN1fZQoaAZoCWgPQwhLeEKvP0n6v5SGlFKUaBVLMmgWR0Cn7ZFnyup0dX2UKGgGaAloD0MIiSmRRC+j8r+UhpRSlGgVSzJoFkdAp/Ail7+kxnV9lChoBmgJaA9DCBhEpKZdjAfAlIaUUpRoFUsyaBZHQKfv50pVjqh1fZQoaAZoCWgPQwiIug9AapPzv5SGlFKUaBVLMmgWR0Cn76v0h/y5dX2UKGgGaAloD0MIlE+PbRnwAMCUhpRSlGgVSzJoFkdAp+9vaHsTnXV9lChoBmgJaA9DCPkRv2INVwfAlIaUUpRoFUsyaBZHQKfxVQqI7/51fZQoaAZoCWgPQwhz843onvUOwJSGlFKUaBVLMmgWR0Cn8RiZv1lHdX2UKGgGaAloD0MIQzo8hPFT7L+UhpRSlGgVSzJoFkdAp/DcWM0gsHV9lChoBmgJaA9DCC2wx0RKcwrAlIaUUpRoFUsyaBZHQKfwns2vStx1fZQoaAZoCWgPQwisVib8Ur/2v5SGlFKUaBVLMmgWR0Cn8nFpfx+bdX2UKGgGaAloD0MIcHmsGRmECcCUhpRSlGgVSzJoFkdAp/I1D6WPcXV9lChoBmgJaA9DCObOTDCcqwXAlIaUUpRoFUsyaBZHQKfx+M6RyOt1fZQoaAZoCWgPQwg4S8lyEkoPwJSGlFKUaBVLMmgWR0Cn8btSZSeidX2UKGgGaAloD0MIKeeLvRffAMCUhpRSlGgVSzJoFkdAp/N9uNxVAHV9lChoBmgJaA9DCNZz0vvG1w/AlIaUUpRoFUsyaBZHQKfzQW2PT5R1fZQoaAZoCWgPQwiUT49tGbABwJSGlFKUaBVLMmgWR0Cn8wUwJw85dX2UKGgGaAloD0MIya60jNR7AsCUhpRSlGgVSzJoFkdAp/LH0RODa3V9lChoBmgJaA9DCN20Gachqvu/lIaUUpRoFUsyaBZHQKf0mJqqOtJ1fZQoaAZoCWgPQwhgysABLT0qwJSGlFKUaBVLMmgWR0Cn9F0CRwIddX2UKGgGaAloD0MIj46rkV3JI8CUhpRSlGgVSzJoFkdAp/Qgf8uSOnV9lChoBmgJaA9DCBMn9zsUVRXAlIaUUpRoFUsyaBZHQKfz4uwosqd1fZQoaAZoCWgPQwgOvjCZKiAswJSGlFKUaBVLMmgWR0Cn9a44ACGOdX2UKGgGaAloD0MIAK358ZcWDsCUhpRSlGgVSzJoFkdAp/Vx5C4SYnV9lChoBmgJaA9DCHcwYp8ASvG/lIaUUpRoFUsyaBZHQKf1NZPl+3J1fZQoaAZoCWgPQwg0K9uHvLUmwJSGlFKUaBVLMmgWR0Cn9PgaWHDadX2UKGgGaAloD0MI/cBVnkDUMsCUhpRSlGgVSzJoFkdAp/bYrc0tRXV9lChoBmgJaA9DCA+3Q8NiFAPAlIaUUpRoFUsyaBZHQKf2nFZxJd11fZQoaAZoCWgPQwg74SU49cH2v5SGlFKUaBVLMmgWR0Cn9mAI6bONdX2UKGgGaAloD0MIt3wkJT2AO8CUhpRSlGgVSzJoFkdAp/YifSQYDXV9lChoBmgJaA9DCK4SLA5nijPAlIaUUpRoFUsyaBZHQKf32nLJSzh1fZQoaAZoCWgPQwjrO78oQYc7wJSGlFKUaBVLMmgWR0Cn954bS7XhdX2UKGgGaAloD0MISaKXUSyrQcCUhpRSlGgVSzJoFkdAp/dhysCDEnV9lChoBmgJaA9DCCApIsMqXj7AlIaUUpRoFUsyaBZHQKf3JE5Qxet1fZQoaAZoCWgPQwiOeLKbGbk9wJSGlFKUaBVLMmgWR0Cn+OcDSw4bdX2UKGgGaAloD0MI3lflQuVfOMCUhpRSlGgVSzJoFkdAp/iqqMm4RXV9lChoBmgJaA9DCHeDaK1oOz/AlIaUUpRoFUsyaBZHQKf4bk+5e7d1fZQoaAZoCWgPQwgwndZtUKsqwJSGlFKUaBVLMmgWR0Cn+DDSofjkdX2UKGgGaAloD0MIYtwNorWyHsCUhpRSlGgVSzJoFkdAp/n/yRSxaHV9lChoBmgJaA9DCJeMYyR7BCzAlIaUUpRoFUsyaBZHQKf5w3dbgTB1fZQoaAZoCWgPQwguHt5zYFkjwJSGlFKUaBVLMmgWR0Cn+Ycma6SUdX2UKGgGaAloD0MIqUvGMZL9O8CUhpRSlGgVSzJoFkdAp/lJtNzr/3V9lChoBmgJaA9DCFt5yf/klzDAlIaUUpRoFUsyaBZHQKf7DHpbD/F1fZQoaAZoCWgPQwjeOCnMeyJEwJSGlFKUaBVLMmgWR0Cn+tAogFHKdX2UKGgGaAloD0MIqRYRxeTrQ8CUhpRSlGgVSzJoFkdAp/qT5ylvZXV9lChoBmgJaA9DCDij5qvkkyfAlIaUUpRoFUsyaBZHQKf6VnBciW51ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (676 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -30.786228359863163, "std_reward": 8.569795200161195, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-05T08:42:33.698242"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2e39cefb344ca8a3ceab1f5947397544d43d670062b0e95202f8ff2b1b43859f
3
+ size 3056