vazish commited on
Commit
7f3bad4
·
verified ·
1 Parent(s): 4143a3b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +11 -3
README.md CHANGED
@@ -14,10 +14,9 @@ datasets:
14
  - vazish/autofill_dataset
15
  ---
16
 
17
- ## TinyBert: a Compact Task-Agnostic BERT for Resource-Limited Devices
18
 
19
- Tiny is a thin version of BERT_LARGE, while equipped with bottleneck structures and a carefully designed balance
20
- between self-attentions and feed-forward networks.
21
 
22
  This checkpoint is the original TinyBert Optimized Uncased English:
23
  [TinyBert](https://huggingface.co/google/bert_uncased_L-2_H-128_A-2)
@@ -83,4 +82,13 @@ CC Expiration Month 0.972 0.972 0.972 36
83
  accuracy 0.967 1846
84
  macro avg 0.923 0.907 0.910 1846
85
  weighted avg 0.968 0.967 0.967 1846
 
 
 
 
 
 
 
 
 
86
  ```
 
14
  - vazish/autofill_dataset
15
  ---
16
 
17
+ ## BERT Miniatures
18
 
19
+ This is the tiny version of the 24 BERT models referenced in Well-Read Students Learn Better: On the Importance of Pre-training Compact Models (English only, uncased, trained with WordPiece masking).
 
20
 
21
  This checkpoint is the original TinyBert Optimized Uncased English:
22
  [TinyBert](https://huggingface.co/google/bert_uncased_L-2_H-128_A-2)
 
82
  accuracy 0.967 1846
83
  macro avg 0.923 0.907 0.910 1846
84
  weighted avg 0.968 0.967 0.967 1846
85
+ ```
86
+
87
+ ```
88
+ @article{turc2019,
89
+ title={Well-Read Students Learn Better: On the Importance of Pre-training Compact Models},
90
+ author={Turc, Iulia and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina},
91
+ journal={arXiv preprint arXiv:1908.08962v2 },
92
+ year={2019}
93
+ }
94
  ```