Update README.md
Browse files
README.md
ADDED
@@ -0,0 +1,354 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
quantized_by: jartine
|
3 |
+
model_creator: ibm-granite
|
4 |
+
pipeline_tag: text-generation
|
5 |
+
base_model: ibm-granite/granite-34b-code-base
|
6 |
+
inference: true
|
7 |
+
license: apache-2.0
|
8 |
+
datasets:
|
9 |
+
- bigcode/commitpackft
|
10 |
+
- TIGER-Lab/MathInstruct
|
11 |
+
- meta-math/MetaMathQA
|
12 |
+
- glaiveai/glaive-code-assistant-v3
|
13 |
+
- glaive-function-calling-v2
|
14 |
+
- bugdaryan/sql-create-context-instruction
|
15 |
+
- garage-bAInd/Open-Platypus
|
16 |
+
- nvidia/HelpSteer
|
17 |
+
metrics:
|
18 |
+
- code_eval
|
19 |
+
library_name: transformers
|
20 |
+
tags:
|
21 |
+
- code
|
22 |
+
- granite
|
23 |
+
model-index:
|
24 |
+
- name: granite-34b-code-instruct
|
25 |
+
results:
|
26 |
+
- task:
|
27 |
+
type: text-generation
|
28 |
+
dataset:
|
29 |
+
type: bigcode/humanevalpack
|
30 |
+
name: HumanEvalSynthesis(Python)
|
31 |
+
metrics:
|
32 |
+
- name: pass@1
|
33 |
+
type: pass@1
|
34 |
+
value: 62.2
|
35 |
+
veriefied: false
|
36 |
+
- task:
|
37 |
+
type: text-generation
|
38 |
+
dataset:
|
39 |
+
type: bigcode/humanevalpack
|
40 |
+
name: HumanEvalSynthesis(JavaScript)
|
41 |
+
metrics:
|
42 |
+
- name: pass@1
|
43 |
+
type: pass@1
|
44 |
+
value: 56.7
|
45 |
+
veriefied: false
|
46 |
+
- task:
|
47 |
+
type: text-generation
|
48 |
+
dataset:
|
49 |
+
type: bigcode/humanevalpack
|
50 |
+
name: HumanEvalSynthesis(Java)
|
51 |
+
metrics:
|
52 |
+
- name: pass@1
|
53 |
+
type: pass@1
|
54 |
+
value: 62.8
|
55 |
+
veriefied: false
|
56 |
+
- task:
|
57 |
+
type: text-generation
|
58 |
+
dataset:
|
59 |
+
type: bigcode/humanevalpack
|
60 |
+
name: HumanEvalSynthesis(Go)
|
61 |
+
metrics:
|
62 |
+
- name: pass@1
|
63 |
+
type: pass@1
|
64 |
+
value: 47.6
|
65 |
+
veriefied: false
|
66 |
+
- task:
|
67 |
+
type: text-generation
|
68 |
+
dataset:
|
69 |
+
type: bigcode/humanevalpack
|
70 |
+
name: HumanEvalSynthesis(C++)
|
71 |
+
metrics:
|
72 |
+
- name: pass@1
|
73 |
+
type: pass@1
|
74 |
+
value: 57.9
|
75 |
+
veriefied: false
|
76 |
+
- task:
|
77 |
+
type: text-generation
|
78 |
+
dataset:
|
79 |
+
type: bigcode/humanevalpack
|
80 |
+
name: HumanEvalSynthesis(Rust)
|
81 |
+
metrics:
|
82 |
+
- name: pass@1
|
83 |
+
type: pass@1
|
84 |
+
value: 41.5
|
85 |
+
veriefied: false
|
86 |
+
- task:
|
87 |
+
type: text-generation
|
88 |
+
dataset:
|
89 |
+
type: bigcode/humanevalpack
|
90 |
+
name: HumanEvalExplain(Python)
|
91 |
+
metrics:
|
92 |
+
- name: pass@1
|
93 |
+
type: pass@1
|
94 |
+
value: 53.0
|
95 |
+
veriefied: false
|
96 |
+
- task:
|
97 |
+
type: text-generation
|
98 |
+
dataset:
|
99 |
+
type: bigcode/humanevalpack
|
100 |
+
name: HumanEvalExplain(JavaScript)
|
101 |
+
metrics:
|
102 |
+
- name: pass@1
|
103 |
+
type: pass@1
|
104 |
+
value: 45.1
|
105 |
+
veriefied: false
|
106 |
+
- task:
|
107 |
+
type: text-generation
|
108 |
+
dataset:
|
109 |
+
type: bigcode/humanevalpack
|
110 |
+
name: HumanEvalExplain(Java)
|
111 |
+
metrics:
|
112 |
+
- name: pass@1
|
113 |
+
type: pass@1
|
114 |
+
value: 50.6
|
115 |
+
veriefied: false
|
116 |
+
- task:
|
117 |
+
type: text-generation
|
118 |
+
dataset:
|
119 |
+
type: bigcode/humanevalpack
|
120 |
+
name: HumanEvalExplain(Go)
|
121 |
+
metrics:
|
122 |
+
- name: pass@1
|
123 |
+
type: pass@1
|
124 |
+
value: 36.0
|
125 |
+
veriefied: false
|
126 |
+
- task:
|
127 |
+
type: text-generation
|
128 |
+
dataset:
|
129 |
+
type: bigcode/humanevalpack
|
130 |
+
name: HumanEvalExplain(C++)
|
131 |
+
metrics:
|
132 |
+
- name: pass@1
|
133 |
+
type: pass@1
|
134 |
+
value: 42.7
|
135 |
+
veriefied: false
|
136 |
+
- task:
|
137 |
+
type: text-generation
|
138 |
+
dataset:
|
139 |
+
type: bigcode/humanevalpack
|
140 |
+
name: HumanEvalExplain(Rust)
|
141 |
+
metrics:
|
142 |
+
- name: pass@1
|
143 |
+
type: pass@1
|
144 |
+
value: 23.8
|
145 |
+
veriefied: false
|
146 |
+
- task:
|
147 |
+
type: text-generation
|
148 |
+
dataset:
|
149 |
+
type: bigcode/humanevalpack
|
150 |
+
name: HumanEvalFix(Python)
|
151 |
+
metrics:
|
152 |
+
- name: pass@1
|
153 |
+
type: pass@1
|
154 |
+
value: 54.9
|
155 |
+
veriefied: false
|
156 |
+
- task:
|
157 |
+
type: text-generation
|
158 |
+
dataset:
|
159 |
+
type: bigcode/humanevalpack
|
160 |
+
name: HumanEvalFix(JavaScript)
|
161 |
+
metrics:
|
162 |
+
- name: pass@1
|
163 |
+
type: pass@1
|
164 |
+
value: 47.6
|
165 |
+
veriefied: false
|
166 |
+
- task:
|
167 |
+
type: text-generation
|
168 |
+
dataset:
|
169 |
+
type: bigcode/humanevalpack
|
170 |
+
name: HumanEvalFix(Java)
|
171 |
+
metrics:
|
172 |
+
- name: pass@1
|
173 |
+
type: pass@1
|
174 |
+
value: 55.5
|
175 |
+
veriefied: false
|
176 |
+
- task:
|
177 |
+
type: text-generation
|
178 |
+
dataset:
|
179 |
+
type: bigcode/humanevalpack
|
180 |
+
name: HumanEvalFix(Go)
|
181 |
+
metrics:
|
182 |
+
- name: pass@1
|
183 |
+
type: pass@1
|
184 |
+
value: 51.2
|
185 |
+
veriefied: false
|
186 |
+
- task:
|
187 |
+
type: text-generation
|
188 |
+
dataset:
|
189 |
+
type: bigcode/humanevalpack
|
190 |
+
name: HumanEvalFix(C++)
|
191 |
+
metrics:
|
192 |
+
- name: pass@1
|
193 |
+
type: pass@1
|
194 |
+
value: 47.0
|
195 |
+
veriefied: false
|
196 |
+
- task:
|
197 |
+
type: text-generation
|
198 |
+
dataset:
|
199 |
+
type: bigcode/humanevalpack
|
200 |
+
name: HumanEvalFix(Rust)
|
201 |
+
metrics:
|
202 |
+
- name: pass@1
|
203 |
+
type: pass@1
|
204 |
+
value: 45.1
|
205 |
+
veriefied: false
|
206 |
+
---
|
207 |
+
|
208 |
+
# Granite 34B Code Instruct - llamafile
|
209 |
+
|
210 |
+
This repository contains executable weights (which we call
|
211 |
+
[llamafiles](https://github.com/Mozilla-Ocho/llamafile)) that run on
|
212 |
+
Linux, MacOS, Windows, FreeBSD, OpenBSD, and NetBSD for AMD64 and ARM64.
|
213 |
+
|
214 |
+
- Model creator: [IBM](https://hf.co/ibm-granite)
|
215 |
+
- Original model: [ibm-granite/granite-34b-code-instruct](https://huggingface.co/ibm-granite/granite-34b-code-instruct)
|
216 |
+
- Base model: [ibm-granite/granite-34b-code-base](https://huggingface.co/ibm-granite/granite-34b-code-base)
|
217 |
+
|
218 |
+
Granite 34B is a coding model released by IBM in April of 2024.
|
219 |
+
|
220 |
+
## Quickstart
|
221 |
+
|
222 |
+
Assuming your system has at least 128GB of RAM, you can try running the
|
223 |
+
following command which download, concatenate, and execute the model.
|
224 |
+
|
225 |
+
```
|
226 |
+
( curl -L https://huggingface.co/jartine/granite-34b-code-instruct-llamafile/resolve/main/granite-34b-code-instruct.Q5_0.llamafile.cat0
|
227 |
+
curl -L https://huggingface.co/jartine/granite-34b-code-instruct-llamafile/resolve/main/granite-34b-code-instruct.Q5_0.llamafile.cat1
|
228 |
+
) > granite-34b-code-instruct.Q5_0.llamafile
|
229 |
+
chmod +x granite-34b-code-instruct.Q5_0.llamafile
|
230 |
+
./granite-34b-code-instruct.Q5_0.llamafile --help # view manual
|
231 |
+
./granite-34b-code-instruct.Q5_0.llamafile # launch web gui + oai api
|
232 |
+
./granite-34b-code-instruct.Q5_0.llamafile -p ... # cli interface (scriptable)
|
233 |
+
```
|
234 |
+
|
235 |
+
Alternatively, you may download an official `llamafile` executable from
|
236 |
+
Mozilla Ocho on GitHub, in which case you can use the Granite llamafiles
|
237 |
+
as a simple weights data file.
|
238 |
+
|
239 |
+
```
|
240 |
+
llamafile -m granite-34b-code-instruct.Q5_0.llamafile ...
|
241 |
+
```
|
242 |
+
|
243 |
+
For further information, please see the [llamafile
|
244 |
+
README](https://github.com/mozilla-ocho/llamafile/).
|
245 |
+
|
246 |
+
Having **trouble?** See the ["Gotchas"
|
247 |
+
section](https://github.com/mozilla-ocho/llamafile/?tab=readme-ov-file#gotchas)
|
248 |
+
of the README.
|
249 |
+
|
250 |
+
## Prompting
|
251 |
+
|
252 |
+
The chat template is stored in the GGUF files. From the CLI interface,
|
253 |
+
Mistral style prompts seem to work with this model too:
|
254 |
+
|
255 |
+
```
|
256 |
+
[INST] {{prompt}} [/INST]
|
257 |
+
```
|
258 |
+
|
259 |
+
Command template:
|
260 |
+
|
261 |
+
```
|
262 |
+
./granite-34b-code-instruct.Q5_0.llamafile -p "[INST]{{prompt}}[/INST]"
|
263 |
+
```
|
264 |
+
|
265 |
+
The maximum context size of this model is 8192 tokens. These llamafiles
|
266 |
+
use a default context size of 512 tokens. Whenever you need the maximum
|
267 |
+
context size to be available with llamafile for any given model, you can
|
268 |
+
pass the `-c 0` flag.
|
269 |
+
|
270 |
+
## About Quantization
|
271 |
+
|
272 |
+
Our own evaluation of this model leads us to believe that it works best
|
273 |
+
with the `Q5_0` and `Q8_0` quants. We tried other quantization formats
|
274 |
+
such as `Q6_K` but it didn't seem to be a good of a fit for this model.
|
275 |
+
|
276 |
+
## About llamafile
|
277 |
+
|
278 |
+
llamafile is a new format introduced by Mozilla Ocho on Nov 20th 2023.
|
279 |
+
It uses Cosmopolitan Libc to turn LLM weights into runnable llama.cpp
|
280 |
+
binaries that run on the stock installs of six OSes for both ARM64 and
|
281 |
+
AMD64.
|
282 |
+
|
283 |
+
In addition to being executables, llamafiles are also zip archives. Each
|
284 |
+
llamafile contains a GGUF file, which you can extract using the `unzip`
|
285 |
+
command. If you want to change or add files to your llamafiles, then the
|
286 |
+
`zipalign` command (distributed on the llamafile github) should be used
|
287 |
+
instead of the traditional `zip` command.
|
288 |
+
|
289 |
+
---
|
290 |
+
|
291 |
+
![image/png](https://cdn-uploads.huggingface.co/production/uploads/62cd5057674cdb524450093d/1hzxoPwqkBJXshKVVe6_9.png)
|
292 |
+
|
293 |
+
# Granite-34B-Code-Instruct
|
294 |
+
|
295 |
+
## Model Summary
|
296 |
+
**Granite-34B-Code-Instruct** is a 34B parameter model fine tuned from *Granite-34B-Code-Base* on a combination of **permissively licensed** instruction data to enhance instruction following capabilities including logical reasoning and problem-solving skills.
|
297 |
+
|
298 |
+
- **Developers:** IBM Research
|
299 |
+
- **GitHub Repository:** [ibm-granite/granite-code-models](https://github.com/ibm-granite/granite-code-models)
|
300 |
+
- **Paper:** [Granite Code Models: A Family of Open Foundation Models for Code Intelligence](https://arxiv.org/abs/2405.04324)
|
301 |
+
- **Release Date**: May 6th, 2024
|
302 |
+
- **License:** [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0).
|
303 |
+
|
304 |
+
## Usage
|
305 |
+
### Intended use
|
306 |
+
The model is designed to respond to coding related instructions and can be used to build coding assitants.
|
307 |
+
|
308 |
+
<!-- TO DO: Check starcoder2 instruct code example that includes the template https://huggingface.co/bigcode/starcoder2-15b-instruct-v0.1 -->
|
309 |
+
|
310 |
+
### Generation
|
311 |
+
This is a simple example of how to use **Granite-34B-Code-Instruct** model.
|
312 |
+
|
313 |
+
```python
|
314 |
+
import torch
|
315 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
316 |
+
device = "cuda" # or "cpu"
|
317 |
+
model_path = "ibm-granite/granite-34b-code-instruct"
|
318 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
319 |
+
# drop device_map if running on CPU
|
320 |
+
model = AutoModelForCausalLM.from_pretrained(model_path, device_map=device)
|
321 |
+
model.eval()
|
322 |
+
# change input text as desired
|
323 |
+
chat = [
|
324 |
+
{ "role": "user", "content": "Write a code to find the maximum value in a list of numbers." },
|
325 |
+
]
|
326 |
+
chat = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
|
327 |
+
# tokenize the text
|
328 |
+
input_tokens = tokenizer(chat, return_tensors="pt")
|
329 |
+
# transfer tokenized inputs to the device
|
330 |
+
for i in input_tokens:
|
331 |
+
input_tokens[i] = input_tokens[i].to(device)
|
332 |
+
# generate output tokens
|
333 |
+
output = model.generate(**input_tokens, max_new_tokens=100)
|
334 |
+
# decode output tokens into text
|
335 |
+
output = tokenizer.batch_decode(output)
|
336 |
+
# loop over the batch to print, in this example the batch size is 1
|
337 |
+
for i in output:
|
338 |
+
print(i)
|
339 |
+
```
|
340 |
+
|
341 |
+
|
342 |
+
<!-- TO DO: Check this part -->
|
343 |
+
## Training Data
|
344 |
+
Granite Code Instruct models are trained on the following types of data.
|
345 |
+
* Code Commits Datasets: we sourced code commits data from the [CommitPackFT](https://huggingface.co/datasets/bigcode/commitpackft) dataset, a filtered version of the full CommitPack dataset. From CommitPackFT dataset, we only consider data for 92 programming languages. Our inclusion criteria boils down to selecting programming languages common across CommitPackFT and the 116 languages that we considered to pretrain the code-base model (*Granite-34B-Code-Base*).
|
346 |
+
* Math Datasets: We consider two high-quality math datasets, [MathInstruct](https://huggingface.co/datasets/TIGER-Lab/MathInstruct) and [MetaMathQA](https://huggingface.co/datasets/meta-math/MetaMathQA). Due to license issues, we filtered out GSM8K-RFT and Camel-Math from MathInstruct dataset.
|
347 |
+
* Code Instruction Datasets: We use [Glaive-Code-Assistant-v3](https://huggingface.co/datasets/glaiveai/glaive-code-assistant-v3), [Glaive-Function-Calling-v2](https://huggingface.co/datasets/glaiveai/glaive-function-calling-v2), [NL2SQL11](https://huggingface.co/datasets/bugdaryan/sql-create-context-instruction) and a small collection of synthetic API calling datasets.
|
348 |
+
* Language Instruction Datasets: We include high-quality datasets such as [HelpSteer](https://huggingface.co/datasets/nvidia/HelpSteer) and an open license-filtered version of [Platypus](https://huggingface.co/datasets/garage-bAInd/Open-Platypus). We also include a collection of hardcoded prompts to ensure our model generates correct outputs given inquiries about its name or developers.
|
349 |
+
|
350 |
+
## Infrastructure
|
351 |
+
We train the Granite Code models using two of IBM's super computing clusters, namely Vela and Blue Vela, both outfitted with NVIDIA A100 and H100 GPUs respectively. These clusters provide a scalable and efficient infrastructure for training our models over thousands of GPUs.
|
352 |
+
|
353 |
+
## Ethical Considerations and Limitations
|
354 |
+
Granite code instruct models are primarily finetuned using instruction-response pairs across a specific set of programming languages. Thus, their performance may be limited with out-of-domain programming languages. In this situation, it is beneficial providing few-shot examples to steer the model's output. Moreover, developers should perform safety testing and target-specific tuning before deploying these models on critical applications. The model also inherits ethical considerations and limitations from its base model. For more information, please refer to *[Granite-34B-Code-Base](https://huggingface.co/ibm-granite/granite-34b-code-base)* model card.
|