jartine commited on
Commit
a92633c
·
verified ·
1 Parent(s): 97e141d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +354 -0
README.md ADDED
@@ -0,0 +1,354 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ quantized_by: jartine
3
+ model_creator: ibm-granite
4
+ pipeline_tag: text-generation
5
+ base_model: ibm-granite/granite-34b-code-base
6
+ inference: true
7
+ license: apache-2.0
8
+ datasets:
9
+ - bigcode/commitpackft
10
+ - TIGER-Lab/MathInstruct
11
+ - meta-math/MetaMathQA
12
+ - glaiveai/glaive-code-assistant-v3
13
+ - glaive-function-calling-v2
14
+ - bugdaryan/sql-create-context-instruction
15
+ - garage-bAInd/Open-Platypus
16
+ - nvidia/HelpSteer
17
+ metrics:
18
+ - code_eval
19
+ library_name: transformers
20
+ tags:
21
+ - code
22
+ - granite
23
+ model-index:
24
+ - name: granite-34b-code-instruct
25
+ results:
26
+ - task:
27
+ type: text-generation
28
+ dataset:
29
+ type: bigcode/humanevalpack
30
+ name: HumanEvalSynthesis(Python)
31
+ metrics:
32
+ - name: pass@1
33
+ type: pass@1
34
+ value: 62.2
35
+ veriefied: false
36
+ - task:
37
+ type: text-generation
38
+ dataset:
39
+ type: bigcode/humanevalpack
40
+ name: HumanEvalSynthesis(JavaScript)
41
+ metrics:
42
+ - name: pass@1
43
+ type: pass@1
44
+ value: 56.7
45
+ veriefied: false
46
+ - task:
47
+ type: text-generation
48
+ dataset:
49
+ type: bigcode/humanevalpack
50
+ name: HumanEvalSynthesis(Java)
51
+ metrics:
52
+ - name: pass@1
53
+ type: pass@1
54
+ value: 62.8
55
+ veriefied: false
56
+ - task:
57
+ type: text-generation
58
+ dataset:
59
+ type: bigcode/humanevalpack
60
+ name: HumanEvalSynthesis(Go)
61
+ metrics:
62
+ - name: pass@1
63
+ type: pass@1
64
+ value: 47.6
65
+ veriefied: false
66
+ - task:
67
+ type: text-generation
68
+ dataset:
69
+ type: bigcode/humanevalpack
70
+ name: HumanEvalSynthesis(C++)
71
+ metrics:
72
+ - name: pass@1
73
+ type: pass@1
74
+ value: 57.9
75
+ veriefied: false
76
+ - task:
77
+ type: text-generation
78
+ dataset:
79
+ type: bigcode/humanevalpack
80
+ name: HumanEvalSynthesis(Rust)
81
+ metrics:
82
+ - name: pass@1
83
+ type: pass@1
84
+ value: 41.5
85
+ veriefied: false
86
+ - task:
87
+ type: text-generation
88
+ dataset:
89
+ type: bigcode/humanevalpack
90
+ name: HumanEvalExplain(Python)
91
+ metrics:
92
+ - name: pass@1
93
+ type: pass@1
94
+ value: 53.0
95
+ veriefied: false
96
+ - task:
97
+ type: text-generation
98
+ dataset:
99
+ type: bigcode/humanevalpack
100
+ name: HumanEvalExplain(JavaScript)
101
+ metrics:
102
+ - name: pass@1
103
+ type: pass@1
104
+ value: 45.1
105
+ veriefied: false
106
+ - task:
107
+ type: text-generation
108
+ dataset:
109
+ type: bigcode/humanevalpack
110
+ name: HumanEvalExplain(Java)
111
+ metrics:
112
+ - name: pass@1
113
+ type: pass@1
114
+ value: 50.6
115
+ veriefied: false
116
+ - task:
117
+ type: text-generation
118
+ dataset:
119
+ type: bigcode/humanevalpack
120
+ name: HumanEvalExplain(Go)
121
+ metrics:
122
+ - name: pass@1
123
+ type: pass@1
124
+ value: 36.0
125
+ veriefied: false
126
+ - task:
127
+ type: text-generation
128
+ dataset:
129
+ type: bigcode/humanevalpack
130
+ name: HumanEvalExplain(C++)
131
+ metrics:
132
+ - name: pass@1
133
+ type: pass@1
134
+ value: 42.7
135
+ veriefied: false
136
+ - task:
137
+ type: text-generation
138
+ dataset:
139
+ type: bigcode/humanevalpack
140
+ name: HumanEvalExplain(Rust)
141
+ metrics:
142
+ - name: pass@1
143
+ type: pass@1
144
+ value: 23.8
145
+ veriefied: false
146
+ - task:
147
+ type: text-generation
148
+ dataset:
149
+ type: bigcode/humanevalpack
150
+ name: HumanEvalFix(Python)
151
+ metrics:
152
+ - name: pass@1
153
+ type: pass@1
154
+ value: 54.9
155
+ veriefied: false
156
+ - task:
157
+ type: text-generation
158
+ dataset:
159
+ type: bigcode/humanevalpack
160
+ name: HumanEvalFix(JavaScript)
161
+ metrics:
162
+ - name: pass@1
163
+ type: pass@1
164
+ value: 47.6
165
+ veriefied: false
166
+ - task:
167
+ type: text-generation
168
+ dataset:
169
+ type: bigcode/humanevalpack
170
+ name: HumanEvalFix(Java)
171
+ metrics:
172
+ - name: pass@1
173
+ type: pass@1
174
+ value: 55.5
175
+ veriefied: false
176
+ - task:
177
+ type: text-generation
178
+ dataset:
179
+ type: bigcode/humanevalpack
180
+ name: HumanEvalFix(Go)
181
+ metrics:
182
+ - name: pass@1
183
+ type: pass@1
184
+ value: 51.2
185
+ veriefied: false
186
+ - task:
187
+ type: text-generation
188
+ dataset:
189
+ type: bigcode/humanevalpack
190
+ name: HumanEvalFix(C++)
191
+ metrics:
192
+ - name: pass@1
193
+ type: pass@1
194
+ value: 47.0
195
+ veriefied: false
196
+ - task:
197
+ type: text-generation
198
+ dataset:
199
+ type: bigcode/humanevalpack
200
+ name: HumanEvalFix(Rust)
201
+ metrics:
202
+ - name: pass@1
203
+ type: pass@1
204
+ value: 45.1
205
+ veriefied: false
206
+ ---
207
+
208
+ # Granite 34B Code Instruct - llamafile
209
+
210
+ This repository contains executable weights (which we call
211
+ [llamafiles](https://github.com/Mozilla-Ocho/llamafile)) that run on
212
+ Linux, MacOS, Windows, FreeBSD, OpenBSD, and NetBSD for AMD64 and ARM64.
213
+
214
+ - Model creator: [IBM](https://hf.co/ibm-granite)
215
+ - Original model: [ibm-granite/granite-34b-code-instruct](https://huggingface.co/ibm-granite/granite-34b-code-instruct)
216
+ - Base model: [ibm-granite/granite-34b-code-base](https://huggingface.co/ibm-granite/granite-34b-code-base)
217
+
218
+ Granite 34B is a coding model released by IBM in April of 2024.
219
+
220
+ ## Quickstart
221
+
222
+ Assuming your system has at least 128GB of RAM, you can try running the
223
+ following command which download, concatenate, and execute the model.
224
+
225
+ ```
226
+ ( curl -L https://huggingface.co/jartine/granite-34b-code-instruct-llamafile/resolve/main/granite-34b-code-instruct.Q5_0.llamafile.cat0
227
+ curl -L https://huggingface.co/jartine/granite-34b-code-instruct-llamafile/resolve/main/granite-34b-code-instruct.Q5_0.llamafile.cat1
228
+ ) > granite-34b-code-instruct.Q5_0.llamafile
229
+ chmod +x granite-34b-code-instruct.Q5_0.llamafile
230
+ ./granite-34b-code-instruct.Q5_0.llamafile --help # view manual
231
+ ./granite-34b-code-instruct.Q5_0.llamafile # launch web gui + oai api
232
+ ./granite-34b-code-instruct.Q5_0.llamafile -p ... # cli interface (scriptable)
233
+ ```
234
+
235
+ Alternatively, you may download an official `llamafile` executable from
236
+ Mozilla Ocho on GitHub, in which case you can use the Granite llamafiles
237
+ as a simple weights data file.
238
+
239
+ ```
240
+ llamafile -m granite-34b-code-instruct.Q5_0.llamafile ...
241
+ ```
242
+
243
+ For further information, please see the [llamafile
244
+ README](https://github.com/mozilla-ocho/llamafile/).
245
+
246
+ Having **trouble?** See the ["Gotchas"
247
+ section](https://github.com/mozilla-ocho/llamafile/?tab=readme-ov-file#gotchas)
248
+ of the README.
249
+
250
+ ## Prompting
251
+
252
+ The chat template is stored in the GGUF files. From the CLI interface,
253
+ Mistral style prompts seem to work with this model too:
254
+
255
+ ```
256
+ [INST] {{prompt}} [/INST]
257
+ ```
258
+
259
+ Command template:
260
+
261
+ ```
262
+ ./granite-34b-code-instruct.Q5_0.llamafile -p "[INST]{{prompt}}[/INST]"
263
+ ```
264
+
265
+ The maximum context size of this model is 8192 tokens. These llamafiles
266
+ use a default context size of 512 tokens. Whenever you need the maximum
267
+ context size to be available with llamafile for any given model, you can
268
+ pass the `-c 0` flag.
269
+
270
+ ## About Quantization
271
+
272
+ Our own evaluation of this model leads us to believe that it works best
273
+ with the `Q5_0` and `Q8_0` quants. We tried other quantization formats
274
+ such as `Q6_K` but it didn't seem to be a good of a fit for this model.
275
+
276
+ ## About llamafile
277
+
278
+ llamafile is a new format introduced by Mozilla Ocho on Nov 20th 2023.
279
+ It uses Cosmopolitan Libc to turn LLM weights into runnable llama.cpp
280
+ binaries that run on the stock installs of six OSes for both ARM64 and
281
+ AMD64.
282
+
283
+ In addition to being executables, llamafiles are also zip archives. Each
284
+ llamafile contains a GGUF file, which you can extract using the `unzip`
285
+ command. If you want to change or add files to your llamafiles, then the
286
+ `zipalign` command (distributed on the llamafile github) should be used
287
+ instead of the traditional `zip` command.
288
+
289
+ ---
290
+
291
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/62cd5057674cdb524450093d/1hzxoPwqkBJXshKVVe6_9.png)
292
+
293
+ # Granite-34B-Code-Instruct
294
+
295
+ ## Model Summary
296
+ **Granite-34B-Code-Instruct** is a 34B parameter model fine tuned from *Granite-34B-Code-Base* on a combination of **permissively licensed** instruction data to enhance instruction following capabilities including logical reasoning and problem-solving skills.
297
+
298
+ - **Developers:** IBM Research
299
+ - **GitHub Repository:** [ibm-granite/granite-code-models](https://github.com/ibm-granite/granite-code-models)
300
+ - **Paper:** [Granite Code Models: A Family of Open Foundation Models for Code Intelligence](https://arxiv.org/abs/2405.04324)
301
+ - **Release Date**: May 6th, 2024
302
+ - **License:** [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0).
303
+
304
+ ## Usage
305
+ ### Intended use
306
+ The model is designed to respond to coding related instructions and can be used to build coding assitants.
307
+
308
+ <!-- TO DO: Check starcoder2 instruct code example that includes the template https://huggingface.co/bigcode/starcoder2-15b-instruct-v0.1 -->
309
+
310
+ ### Generation
311
+ This is a simple example of how to use **Granite-34B-Code-Instruct** model.
312
+
313
+ ```python
314
+ import torch
315
+ from transformers import AutoModelForCausalLM, AutoTokenizer
316
+ device = "cuda" # or "cpu"
317
+ model_path = "ibm-granite/granite-34b-code-instruct"
318
+ tokenizer = AutoTokenizer.from_pretrained(model_path)
319
+ # drop device_map if running on CPU
320
+ model = AutoModelForCausalLM.from_pretrained(model_path, device_map=device)
321
+ model.eval()
322
+ # change input text as desired
323
+ chat = [
324
+ { "role": "user", "content": "Write a code to find the maximum value in a list of numbers." },
325
+ ]
326
+ chat = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
327
+ # tokenize the text
328
+ input_tokens = tokenizer(chat, return_tensors="pt")
329
+ # transfer tokenized inputs to the device
330
+ for i in input_tokens:
331
+ input_tokens[i] = input_tokens[i].to(device)
332
+ # generate output tokens
333
+ output = model.generate(**input_tokens, max_new_tokens=100)
334
+ # decode output tokens into text
335
+ output = tokenizer.batch_decode(output)
336
+ # loop over the batch to print, in this example the batch size is 1
337
+ for i in output:
338
+ print(i)
339
+ ```
340
+
341
+
342
+ <!-- TO DO: Check this part -->
343
+ ## Training Data
344
+ Granite Code Instruct models are trained on the following types of data.
345
+ * Code Commits Datasets: we sourced code commits data from the [CommitPackFT](https://huggingface.co/datasets/bigcode/commitpackft) dataset, a filtered version of the full CommitPack dataset. From CommitPackFT dataset, we only consider data for 92 programming languages. Our inclusion criteria boils down to selecting programming languages common across CommitPackFT and the 116 languages that we considered to pretrain the code-base model (*Granite-34B-Code-Base*).
346
+ * Math Datasets: We consider two high-quality math datasets, [MathInstruct](https://huggingface.co/datasets/TIGER-Lab/MathInstruct) and [MetaMathQA](https://huggingface.co/datasets/meta-math/MetaMathQA). Due to license issues, we filtered out GSM8K-RFT and Camel-Math from MathInstruct dataset.
347
+ * Code Instruction Datasets: We use [Glaive-Code-Assistant-v3](https://huggingface.co/datasets/glaiveai/glaive-code-assistant-v3), [Glaive-Function-Calling-v2](https://huggingface.co/datasets/glaiveai/glaive-function-calling-v2), [NL2SQL11](https://huggingface.co/datasets/bugdaryan/sql-create-context-instruction) and a small collection of synthetic API calling datasets.
348
+ * Language Instruction Datasets: We include high-quality datasets such as [HelpSteer](https://huggingface.co/datasets/nvidia/HelpSteer) and an open license-filtered version of [Platypus](https://huggingface.co/datasets/garage-bAInd/Open-Platypus). We also include a collection of hardcoded prompts to ensure our model generates correct outputs given inquiries about its name or developers.
349
+
350
+ ## Infrastructure
351
+ We train the Granite Code models using two of IBM's super computing clusters, namely Vela and Blue Vela, both outfitted with NVIDIA A100 and H100 GPUs respectively. These clusters provide a scalable and efficient infrastructure for training our models over thousands of GPUs.
352
+
353
+ ## Ethical Considerations and Limitations
354
+ Granite code instruct models are primarily finetuned using instruction-response pairs across a specific set of programming languages. Thus, their performance may be limited with out-of-domain programming languages. In this situation, it is beneficial providing few-shot examples to steer the model's output. Moreover, developers should perform safety testing and target-specific tuning before deploying these models on critical applications. The model also inherits ethical considerations and limitations from its base model. For more information, please refer to *[Granite-34B-Code-Base](https://huggingface.co/ibm-granite/granite-34b-code-base)* model card.