JacopoAbate
commited on
Commit
•
011719d
1
Parent(s):
ed0684a
Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,94 @@
|
|
1 |
-
---
|
2 |
-
license: mit
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
library_name: transformers
|
6 |
+
tags:
|
7 |
+
- ppo
|
8 |
+
- phi3
|
9 |
+
- chatml
|
10 |
+
datasets: argilla/ultrafeedback-binarized-preferences-cleaned
|
11 |
+
metrics:
|
12 |
+
- hellaswag
|
13 |
+
- arc_challenge
|
14 |
+
- m_mmlu 5 shot
|
15 |
+
---
|
16 |
+
|
17 |
+
# Model Information
|
18 |
+
|
19 |
+
|
20 |
+
Phi-3-mini-128k-instruct-PPO is an updated version of [Phi-3-mini-128k-instruct](https://huggingface.co/microsoft/Phi-3-mini-128k-instruct), aligned with PPO.
|
21 |
+
|
22 |
+
- It's trained on [ultrafeedback-binarized-preferences-cleaned](https://huggingface.co/datasets/argilla/ultrafeedback-binarized-preferences-cleaned).
|
23 |
+
|
24 |
+
# Evaluation
|
25 |
+
|
26 |
+
We evaluated the model using the same test sets as used for the [Open LLM Leaderboard](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
|
27 |
+
|
28 |
+
| hellaswag acc_norm | arc_challenge acc_norm | m_mmlu 5-shot acc | Average |
|
29 |
+
|:----------------------| :--------------- | :-------------------- | :------- |
|
30 |
+
| 0.7621 | 0.5375 | 0.6824 | 0.6606 |
|
31 |
+
|
32 |
+
|
33 |
+
## Usage
|
34 |
+
|
35 |
+
Be sure to install these dependencies before running the program
|
36 |
+
|
37 |
+
```python
|
38 |
+
!pip install transformers torch sentencepiece
|
39 |
+
```
|
40 |
+
|
41 |
+
```python
|
42 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
43 |
+
|
44 |
+
device = "cpu" # if you want to use the gpu make sure to have cuda toolkit installed and change this to "cuda"
|
45 |
+
|
46 |
+
model = AutoModelForCausalLM.from_pretrained("MoxoffSpA/Phi-3-mini-128k-instruct-PPO")
|
47 |
+
tokenizer = AutoTokenizer.from_pretrained("MoxoffSpA/Phi-3-mini-128k-instruct-PPO")
|
48 |
+
|
49 |
+
question = """Quanto è alta la torre di Pisa?"""
|
50 |
+
context = """
|
51 |
+
La Torre di Pisa è un campanile del XII secolo, famoso per la sua inclinazione. Alta circa 56 metri.
|
52 |
+
"""
|
53 |
+
|
54 |
+
prompt = f"Domanda: {question}, contesto: {context}"
|
55 |
+
|
56 |
+
messages = [
|
57 |
+
{"role": "user", "content": prompt}
|
58 |
+
]
|
59 |
+
|
60 |
+
encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt")
|
61 |
+
|
62 |
+
model_inputs = encodeds.to(device)
|
63 |
+
model.to(device)
|
64 |
+
|
65 |
+
generated_ids = model.generate(
|
66 |
+
model_inputs, # The input to the model
|
67 |
+
max_new_tokens=128, # Limiting the maximum number of new tokens generated
|
68 |
+
do_sample=True, # Enabling sampling to introduce randomness in the generation
|
69 |
+
temperature=0.1, # Setting temperature to control the randomness, lower values make it more deterministic
|
70 |
+
top_p=0.95, # Using nucleus sampling with top-p filtering for more coherent generation
|
71 |
+
eos_token_id=tokenizer.eos_token_id # Specifying the token that indicates the end of a sequence
|
72 |
+
)
|
73 |
+
|
74 |
+
decoded_output = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
|
75 |
+
trimmed_output = decoded_output.strip()
|
76 |
+
print(trimmed_output)
|
77 |
+
```
|
78 |
+
|
79 |
+
## Bias, Risks and Limitations
|
80 |
+
|
81 |
+
Phi-3-mini-128k-instruct-PPO has not been aligned to human preferences for safety within the RLHF phase or deployed with in-the-loop filtering of
|
82 |
+
responses like ChatGPT, so the model can produce problematic outputs (especially when prompted to do so). It is also unknown what the size and composition
|
83 |
+
of the corpus was used to train the base model, however it is likely to have included a mix of Web data and technical sources
|
84 |
+
like books and code.
|
85 |
+
|
86 |
+
## Links to resources
|
87 |
+
|
88 |
+
- ultrafeedback-binarized-preferences-cleaned dataset: https://huggingface.co/datasets/argilla/ultrafeedback-binarized-preferences-cleaned
|
89 |
+
- Phi-3-mini-128k-instruct model: https://huggingface.co/microsoft/Phi-3-mini-128k-instruct
|
90 |
+
- Open LLM Leaderbord: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard
|
91 |
+
|
92 |
+
## The Moxoff Team
|
93 |
+
|
94 |
+
Jacopo Abate, Marco D'Ambra, Dario Domanin, Luigi Simeone, Gianpaolo Francesco Trotta
|