Mou11209203
commited on
Upload README.md with huggingface_hub
Browse files
README.md
ADDED
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# DDPM CelebAHQ 256 with Safetensors
|
2 |
+
|
3 |
+
This repository contains a **denoising diffusion probabilistic model (DDPM)** trained on the CelebA HQ dataset at a resolution of 256x256. The model is based on the original `google/ddpm-celebahq-256` implementation and has been updated to support **safetensors** for model storage.
|
4 |
+
|
5 |
+
## Model Information
|
6 |
+
|
7 |
+
- **Model Type**: `UNet2DModel`
|
8 |
+
- **Diffusion Process**: DDPM (Denoising Diffusion Probabilistic Models)
|
9 |
+
- **Training Data**: CelebA HQ dataset
|
10 |
+
- **Resolution**: 256x256
|
11 |
+
- **Format**: The model weights are available in both `safetensors` and standard PyTorch (`.pth`) formats.
|
12 |
+
|
13 |
+
## Features
|
14 |
+
|
15 |
+
- **Safetensors Support**: The model weights are stored in the `safetensors` format, a safer and more efficient alternative to regular PyTorch `.pth` files. It ensures better compatibility, security, and serialization of model weights.
|
16 |
+
- **Pretrained Model**: This model is pretrained on the CelebA HQ dataset and is designed for high-quality image generation.
|
17 |
+
- **Model Formats**: Available in both standard PyTorch and safetensors formats for easy integration into your workflow.
|
18 |
+
|
19 |
+
## Example Images
|
20 |
+
|
21 |
+
Here are some sample images generated by the model at different diffusion steps:
|
22 |
+
|
23 |
+
![Step 50](https://huggingface.co/{repo_name}/blob/main/images/image_step_50.png)
|
24 |
+
![Step 100](https://huggingface.co/{repo_name}/blob/main/images/image_step_100.png)
|
25 |
+
![Step 150](https://huggingface.co/{repo_name}/blob/main/images/image_step_150.png)
|
26 |
+
![Step 200](https://huggingface.co/{repo_name}/blob/main/images/image_step_200.png)
|
27 |
+
![Step 250](https://huggingface.co/{repo_name}/blob/main/images/image_step_250.png)
|
28 |
+
![Step 300](https://huggingface.co/{repo_name}/blob/main/images/image_step_300.png)
|
29 |
+
![Step 400](https://huggingface.co/{repo_name}/blob/main/images/image_step_400.png)
|
30 |
+
![Step 500](https://huggingface.co/{repo_name}/blob/main/images/image_step_500.png)
|
31 |
+
![Step 600](https://huggingface.co/{repo_name}/blob/main/images/image_step_600.png)
|
32 |
+
![Step 700](https://huggingface.co/{repo_name}/blob/main/images/image_step_700.png)
|
33 |
+
![Step 800](https://huggingface.co/{repo_name}/blob/main/images/image_step_800.png)
|
34 |
+
![Step 900](https://huggingface.co/{repo_name}/blob/main/images/image_step_900.png)
|
35 |
+
![Step 1000](https://huggingface.co/{repo_name}/blob/main/images/image_step_1000.png)
|
36 |
+
|
37 |
+
## How to Use
|
38 |
+
|
39 |
+
To use this model, you can load it using the `diffusers` library from Hugging Face. You can load the model in either `safetensors` format or the traditional `.pth` format.
|
40 |
+
|
41 |
+
### Requirements
|
42 |
+
|
43 |
+
- Install the required dependencies:
|
44 |
+
```bash
|
45 |
+
pip install torch diffusers safetensors
|
46 |
+
```
|
47 |
+
|
48 |
+
### Loading the Model
|
49 |
+
|
50 |
+
To load the model and run inference, you can use the following code:
|
51 |
+
|
52 |
+
```python
|
53 |
+
import torch
|
54 |
+
import numpy as np
|
55 |
+
import PIL.Image
|
56 |
+
from diffusers import UNet2DModel, DDPMScheduler
|
57 |
+
import tqdm
|
58 |
+
|
59 |
+
# 1. Initialize the model
|
60 |
+
repo_id = "google/ddpm-celebahq-256"
|
61 |
+
model = UNet2DModel.from_pretrained(repo_id, use_safetensors=True)
|
62 |
+
model.to("cuda") # Move the model to GPU
|
63 |
+
display(model.config)
|
64 |
+
|
65 |
+
# 2. Initialize the scheduler
|
66 |
+
scheduler = DDPMScheduler.from_pretrained(repo_id)
|
67 |
+
|
68 |
+
# 3. Create an image with Gaussian noise
|
69 |
+
torch.manual_seed(0) # Set random seed for reproducibility
|
70 |
+
noisy_sample = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size).to("cuda")
|
71 |
+
display(f"Noisy sample shape: {noisy_sample.shape}")
|
72 |
+
|
73 |
+
# 4. Define a function to display the image
|
74 |
+
def display_sample(sample, i):
|
75 |
+
image_processed = sample.cpu().permute(0, 2, 3, 1)
|
76 |
+
image_processed = (image_processed + 1.0) * 127.5
|
77 |
+
image_processed = image_processed.numpy().astype(np.uint8)
|
78 |
+
|
79 |
+
image_pil = PIL.Image.fromarray(image_processed[0])
|
80 |
+
display(f"Image at step {i}")
|
81 |
+
display(image_pil)
|
82 |
+
|
83 |
+
# 5. Reverse diffusion process
|
84 |
+
sample = noisy_sample
|
85 |
+
for i, t in enumerate(tqdm.tqdm(scheduler.timesteps)):
|
86 |
+
# 1. Predict noise residual
|
87 |
+
with torch.no_grad():
|
88 |
+
residual = model(sample, t).sample
|
89 |
+
|
90 |
+
# 2. Compute the less noisy image and move x_t -> x_t-1
|
91 |
+
sample = scheduler.step(residual, t, sample).prev_sample
|
92 |
+
|
93 |
+
# 3. Optionally display the image (every 50 steps)
|
94 |
+
if (i + 1) % 50 == 0:
|
95 |
+
display_sample(sample, i + 1)
|
96 |
+
|
97 |
+
display("Denoising complete.")
|
98 |
+
```
|
99 |
+
|
100 |
+
## Training
|
101 |
+
|
102 |
+
If you want to train your own model, please have a look at the [official training example](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/training_example.ipynb)
|
103 |
+
|
104 |
+
## Model Storage
|
105 |
+
|
106 |
+
The following files are available for download:
|
107 |
+
|
108 |
+
- **Model Weights (PyTorch format)**: `diffusion_pytorch_model.pth`
|
109 |
+
- **Model Weights (Safetensors format)**: `diffusion_pytorch_model.safetensors`
|
110 |
+
- **Generated Images**: Various steps from 50 to 1000
|
111 |
+
- **README.md**: This document for usage and setup instructions
|
112 |
+
|
113 |
+
## Citation
|
114 |
+
|
115 |
+
If you use this model in your research or project, please cite the original `google/ddpm-celebahq-256` repository:
|
116 |
+
|
117 |
+
```bibtex
|
118 |
+
@misc{google/ddpm-celebahq-256,
|
119 |
+
author = {Google Research},
|
120 |
+
title = {DDPM CelebAHQ 256},
|
121 |
+
year = {2022},
|
122 |
+
url = {https://huggingface.co/google/ddpm-celebahq-256}
|
123 |
+
}
|
124 |
+
```
|
125 |
+
|
126 |
+
## License
|
127 |
+
|
128 |
+
This model is provided under the [Apache 2.0 License](https://www.apache.org/licenses/LICENSE-2.0).
|