Commit
·
c2703b7
1
Parent(s):
617d17b
End of training
Browse files- README.md +70 -0
- config.json +35 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +7 -0
- tokenizer_config.json +15 -0
- training_args.bin +3 -0
- vocab.txt +0 -0
README.md
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
base_model: microsoft/xtremedistil-l6-h256-uncased
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
+
model-index:
|
9 |
+
- name: xtremedistil-l6-h256-uncased-zeroshot-v1.1-none
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# xtremedistil-l6-h256-uncased-zeroshot-v1.1-none
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [microsoft/xtremedistil-l6-h256-uncased](https://huggingface.co/microsoft/xtremedistil-l6-h256-uncased) on an unknown dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 0.1992
|
21 |
+
- F1 Macro: 0.5455
|
22 |
+
- F1 Micro: 0.6194
|
23 |
+
- Accuracy Balanced: 0.5960
|
24 |
+
- Accuracy: 0.6194
|
25 |
+
- Precision Macro: 0.5566
|
26 |
+
- Recall Macro: 0.5960
|
27 |
+
- Precision Micro: 0.6194
|
28 |
+
- Recall Micro: 0.6194
|
29 |
+
|
30 |
+
## Model description
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Intended uses & limitations
|
35 |
+
|
36 |
+
More information needed
|
37 |
+
|
38 |
+
## Training and evaluation data
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Training procedure
|
43 |
+
|
44 |
+
### Training hyperparameters
|
45 |
+
|
46 |
+
The following hyperparameters were used during training:
|
47 |
+
- learning_rate: 2e-05
|
48 |
+
- train_batch_size: 32
|
49 |
+
- eval_batch_size: 128
|
50 |
+
- seed: 42
|
51 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
52 |
+
- lr_scheduler_type: linear
|
53 |
+
- lr_scheduler_warmup_ratio: 0.06
|
54 |
+
- num_epochs: 3
|
55 |
+
|
56 |
+
### Training results
|
57 |
+
|
58 |
+
| Training Loss | Epoch | Step | Validation Loss | F1 Macro | F1 Micro | Accuracy Balanced | Accuracy | Precision Macro | Recall Macro | Precision Micro | Recall Micro |
|
59 |
+
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:--------:|:-----------------:|:--------:|:---------------:|:------------:|:---------------:|:------------:|
|
60 |
+
| 0.3056 | 1.0 | 30790 | 0.4634 | 0.7791 | 0.8013 | 0.7757 | 0.8013 | 0.7832 | 0.7757 | 0.8013 | 0.8013 |
|
61 |
+
| 0.2847 | 2.0 | 61580 | 0.4656 | 0.7826 | 0.8040 | 0.7797 | 0.8040 | 0.7859 | 0.7797 | 0.8040 | 0.8040 |
|
62 |
+
| 0.2618 | 3.0 | 92370 | 0.4774 | 0.7848 | 0.8045 | 0.7841 | 0.8045 | 0.7856 | 0.7841 | 0.8045 | 0.8045 |
|
63 |
+
|
64 |
+
|
65 |
+
### Framework versions
|
66 |
+
|
67 |
+
- Transformers 4.33.3
|
68 |
+
- Pytorch 2.1.2+cu121
|
69 |
+
- Datasets 2.14.7
|
70 |
+
- Tokenizers 0.13.3
|
config.json
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "microsoft/xtremedistil-l6-h256-uncased",
|
3 |
+
"architectures": [
|
4 |
+
"BertForSequenceClassification"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"gradient_checkpointing": false,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 256,
|
12 |
+
"id2label": {
|
13 |
+
"0": "entailment",
|
14 |
+
"1": "not_entailment"
|
15 |
+
},
|
16 |
+
"initializer_range": 0.02,
|
17 |
+
"intermediate_size": 1024,
|
18 |
+
"label2id": {
|
19 |
+
"entailment": 0,
|
20 |
+
"not_entailment": 1
|
21 |
+
},
|
22 |
+
"layer_norm_eps": 1e-12,
|
23 |
+
"max_position_embeddings": 512,
|
24 |
+
"model_type": "bert",
|
25 |
+
"num_attention_heads": 8,
|
26 |
+
"num_hidden_layers": 6,
|
27 |
+
"pad_token_id": 0,
|
28 |
+
"position_embedding_type": "absolute",
|
29 |
+
"problem_type": "single_label_classification",
|
30 |
+
"torch_dtype": "float16",
|
31 |
+
"transformers_version": "4.33.3",
|
32 |
+
"type_vocab_size": 2,
|
33 |
+
"use_cache": true,
|
34 |
+
"vocab_size": 30522
|
35 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:98b31cbc8fabf656af6c1e2225527a024a5ffa62e0e8796184d0091870d935a2
|
3 |
+
size 25537070
|
special_tokens_map.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": "[CLS]",
|
3 |
+
"mask_token": "[MASK]",
|
4 |
+
"pad_token": "[PAD]",
|
5 |
+
"sep_token": "[SEP]",
|
6 |
+
"unk_token": "[UNK]"
|
7 |
+
}
|
tokenizer_config.json
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"clean_up_tokenization_spaces": true,
|
3 |
+
"cls_token": "[CLS]",
|
4 |
+
"do_basic_tokenize": true,
|
5 |
+
"do_lower_case": true,
|
6 |
+
"mask_token": "[MASK]",
|
7 |
+
"model_max_length": 512,
|
8 |
+
"never_split": null,
|
9 |
+
"pad_token": "[PAD]",
|
10 |
+
"sep_token": "[SEP]",
|
11 |
+
"strip_accents": null,
|
12 |
+
"tokenize_chinese_chars": true,
|
13 |
+
"tokenizer_class": "BertTokenizer",
|
14 |
+
"unk_token": "[UNK]"
|
15 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e9fdf5b1ada27a92b4cafbe6bcdefb6c88832d0ecab90253c288b147b03bd97c
|
3 |
+
size 4728
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|