Commit
·
574dbac
1
Parent(s):
297ea39
update readme with easier zeroshot code
Browse files
README.md
CHANGED
@@ -38,8 +38,18 @@ This multilingual model can perform natural language inference (NLI) on 100 lang
|
|
38 |
As of December 2021, mDeBERTa-base is the best performing multilingual base-sized transformer model, introduced by Microsoft in [this paper](https://arxiv.org/pdf/2111.09543.pdf).
|
39 |
|
40 |
|
41 |
-
|
42 |
-
####
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
```python
|
44 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
45 |
import torch
|
|
|
38 |
As of December 2021, mDeBERTa-base is the best performing multilingual base-sized transformer model, introduced by Microsoft in [this paper](https://arxiv.org/pdf/2111.09543.pdf).
|
39 |
|
40 |
|
41 |
+
### How to use the model
|
42 |
+
#### Simple zero-shot classification pipeline
|
43 |
+
```python
|
44 |
+
from transformers import pipeline
|
45 |
+
classifier = pipeline("zero-shot-classification", model="MoritzLaurer/mDeBERTa-v3-base-mnli-xnli")
|
46 |
+
|
47 |
+
sequence_to_classify = "Angela Merkel ist eine Politikerin in Deutschland und Vorsitzende der CDU"
|
48 |
+
candidate_labels = ["politics", "economy", "entertainment", "environment"]
|
49 |
+
output = classifier(sequence_to_classify, candidate_labels, multi_label=False)
|
50 |
+
print(output)
|
51 |
+
```
|
52 |
+
#### NLI use-case
|
53 |
```python
|
54 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
55 |
import torch
|