Model Card for Model ID
Model Details
Model Description
Just a way to sample moods of an end-uesr using generic data from the Google GEMENI API
- Developed by: [More Information Needed] inferencetrainingAI, Vultr.com & GitLab, Google Colab, AWS
- Funded by [optional]: [More Information Needed] Crystal P & Emmanuel Nsanga, Roy Kwan
- Shared by [optional]: [More Information Needed]
- Model type: Peft Model
- Language(s) (NLP): [More Information Needed]
- License: MIT
- Finetuned from model [optional]: EleutherAI 1.3B
Model Sources [optional]
- Repository: [More Information Needed]
- Paper [optional]: [More Information Needed]
- Demo [optional]: [More Information Needed]
Training file included
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
from peft import PeftModel, PeftConfig
import gc
gc.collect()
model_name = "MoodChartAI/basicmood"
adapters_name = "MoodChartAI/basicmood"
torch.cuda.empty_cache()
os.system("sudo swapoff -a; swapon -a")
print(f"Starting to load the model {model_name} into memory")
m = AutoModelForCausalLM.from_pretrained(
model_name,
#load_in_4bit=True,
).to(device='cpu:7')
print(f"Loading the adapters from {adapters_name}")
m = PeftModel.from_pretrained(m, adapters_name)
tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neo-1.3B", trust_remote_code=True)
while True:
mood_input = input("Mood: ")
inputs = tokenizer("Prompt: %s Completions: You're feeling"%mood_input, return_tensors="pt", return_attention_mask=True)
inputs.to(device='cpu:8')
outputs = m.generate(**inputs, max_length=12)
print(tokenizer.batch_decode(outputs)[0])
Uses
Direct Use
[More Information Needed]
Downstream Use [optional]
[More Information Needed]
Out-of-Scope Use
[More Information Needed]
Bias, Risks, and Limitations
[More Information Needed]
Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
Training Details
Training Data
Generic data from GEMENI API
[More Information Needed]
Training Procedure
Preprocessing [optional]
[More Information Needed]
Training Hyperparameters
- Training regime: [More Information Needed]
Speeds, Sizes, Times [optional]
[More Information Needed]
Evaluation
Testing Data, Factors & Metrics
Testing Data
[More Information Needed]
Factors
[More Information Needed]
Metrics
[More Information Needed]
Results
[More Information Needed]
Summary
Model Examination [optional]
[More Information Needed]
Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type: [More Information Needed]
- Hours used: [More Information Needed]
- Cloud Provider: [More Information Needed]
- Compute Region: [More Information Needed]
- Carbon Emitted: [More Information Needed]
Technical Specifications [optional]
Model Architecture and Objective
[More Information Needed]
Compute Infrastructure
[More Information Needed]
Hardware
[More Information Needed] 16GB RAM 8GB sawp memeroy
Software
[More Information Needed]
Citation [optional]
BibTeX:
[More Information Needed]
APA:
[More Information Needed]
Glossary [optional]
[More Information Needed]
More Information [optional]
[More Information Needed]
Model Card Authors [optional]
[More Information Needed]
Model Card Contact
[More Information Needed]
Framework versions
- PEFT 0.8.2
- Downloads last month
- 2
Model tree for MoodChartAI/basicmood
Base model
EleutherAI/gpt-neo-1.3B