File size: 4,433 Bytes
6798694
 
 
 
ee64b8f
6798694
 
77c6175
 
 
 
6798694
85ccce6
 
 
 
609acac
 
 
85ccce6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3169f32
4c86bff
 
2f4f4e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94e4d35
2f4f4e8
 
 
 
 
 
 
 
 
 
 
 
 
 
174c184
2f4f4e8
 
 
 
 
 
 
 
 
 
174c184
94e4d35
 
 
174c184
2f4f4e8
ee64b8f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
---
license: apache-2.0
datasets:
- BAAI/IndustryInstruction_Transportation
- BAAI/IndustryInstruction
base_model:
- meta-llama/Meta-Llama-3.1-8B-Instruct
tags:
- 交通运输
- 语言模型
- chatmodel
---

This model is finetuned on the model llama3.1-8b-instruct using the dataset [BAAI/IndustryInstruction_Transportation](https://huggingface.co/datasets/BAAI/IndustryInstruction_Transportation) dataset, the dataset details can jump to the repo: [BAAI/IndustryInstruction](https://huggingface.co/datasets/BAAI/IndustryInstruction)

## training params

The training framework is llama-factory, template=llama3

```
learning_rate=1e-5
lr_scheduler_type=cosine
max_length=2048
warmup_ratio=0.05
batch_size=64
epoch=10
```

select best ckpt by the evaluation loss
## evaluation

Since I only found an instruction dataset [DUOMO-Lab/Transgpt_sft_v2](https://huggingface.co/datasets/DUOMO-Lab/Transgpt_sft_v2) in the field of traffic, in order to remove the influence of the base model, I used the data in llama3.1-8b-instruc for fine-tuning and compared and evaluated our model.
The evaluation method is: use GPT4 on the validation set of each dataset to compare good, tie, and loss. The evaluation results are as follows


![image/png](https://cdn-uploads.huggingface.co/production/uploads/642f6c64f945a8a5c9ee5b5d/c2GzApj4LlyETZ7ApPHx1.png)


## How to use

```python
# !/usr/bin/env python
# -*- coding:utf-8 -*-
# ==================================================================
# [Author]       : xiaofeng
# [Descriptions] :
# ==================================================================

from transformers import AutoTokenizer, AutoModelForCausalLM
import transformers
import torch


llama3_jinja = """{% if messages[0]['role'] == 'system' %}
    {% set offset = 1 %}
{% else %}
    {% set offset = 0 %}
{% endif %}

{{ bos_token }}
{% for message in messages %}
    {% if (message['role'] == 'user') != (loop.index0 % 2 == offset) %}
        {{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}
    {% endif %}

    {{ '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n' + message['content'] | trim + '<|eot_id|>' }}
{% endfor %}

{% if add_generation_prompt %}
    {{ '<|start_header_id|>' + 'assistant' + '<|end_header_id|>\n\n' }}
{% endif %}"""


dtype = torch.bfloat16

model_dir = "MonteXiaofeng/Tranport-llama3_1_8B_instruct"
model = AutoModelForCausalLM.from_pretrained(
    model_dir,
    device_map="cuda",
    torch_dtype=dtype,
)

tokenizer = AutoTokenizer.from_pretrained(model_dir)
tokenizer.chat_template = llama3_jinja # update template

message = [
    {"role": "system", "content": "You are a helpful assistant"},
    {"role": "user", "content": "私人交通工具的发展对经济有什么影响?"},
]
prompt = tokenizer.apply_chat_template(
    message, tokenize=False, add_generation_prompt=True
)
print(prompt)
inputs = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt")
prompt_length = len(inputs[0])
print(f"prompt_length:{prompt_length}")

generating_args = {
    "do_sample": True,
    "temperature": 1.0,
    "top_p": 0.5,
    "top_k": 15,
    "max_new_tokens": 512,
}


generate_output = model.generate(input_ids=inputs.to(model.device), **generating_args)

response_ids = generate_output[:, prompt_length:]
response = tokenizer.batch_decode(
    response_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True
)
print(response)
"""
私人交通工具的发展对经济有着深远的影响。首先,私人交通工具的发展可以促进汽车制造业的繁荣。随着私人交通工具的需求增加,汽车制造商将面临更大的市场需求,从而带动产业链的发展,创造就业机会,增加经济收入。其次,私人交通工具的发展也会带动相关
  业的发展,如燃料供应、维修服务和保险等。这些行业的发展将为经济增长做出贡献。此外,私人交通工具的发展还会促进城市交通的便利性,提高人们的生活质量,从而带动消费,刺激经济发展。然而,私人交通工具的发展也会带来一些负面影响,如交通拥堵和环境
  染等问题。因此,政府需要采取相应的政策措施来平衡经济发展和环境保护的需要。总的来说,私人交通工具的发展对经济有着重要的影响,需要综合考虑各种因素进行合理规划和管理。
"""

```