File size: 7,418 Bytes
9445995
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
import math
import os
import pathlib

import cv2
import numpy as np
import torch
import torch.nn.functional as func
import tqdm
from imageio_ffmpeg import get_ffmpeg_exe

tensor_interpolation = None


def get_tensor_interpolation_method():
    return tensor_interpolation


def set_tensor_interpolation_method(is_slerp):
    global tensor_interpolation
    tensor_interpolation = slerp if is_slerp else linear


def linear(v1, v2, t):
    return (1.0 - t) * v1 + t * v2


def slerp(v0: torch.Tensor, v1: torch.Tensor, t: float, DOT_THRESHOLD: float = 0.9995) -> torch.Tensor:
    u0 = v0 / v0.norm()
    u1 = v1 / v1.norm()
    dot = (u0 * u1).sum()
    if dot.abs() > DOT_THRESHOLD:
        # logger.info(f'warning: v0 and v1 close to parallel, using linear interpolation instead.')
        return (1.0 - t) * v0 + t * v1
    omega = dot.acos()
    return (((1.0 - t) * omega).sin() * v0 + (t * omega).sin() * v1) / omega.sin()


def draw_kps_image(height, width, kps, color_list=[(255, 0, 0), (0, 255, 0), (0, 0, 255)]):
    stick_width = 4
    limb_seq = np.array([[0, 2], [1, 2]])
    kps = np.array(kps)

    canvas = np.zeros((height, width, 3), dtype=np.uint8)

    for i in range(len(limb_seq)):
        index = limb_seq[i]
        color = color_list[index[0]]

        x = kps[index][:, 0]
        y = kps[index][:, 1]
        length = ((x[0] - x[1]) ** 2 + (y[0] - y[1]) ** 2) ** 0.5
        angle = int(math.degrees(math.atan2(y[0] - y[1], x[0] - x[1])))
        polygon = cv2.ellipse2Poly((int(np.mean(x)), int(np.mean(y))), (int(length / 2), stick_width), angle, 0, 360, 1)
        cv2.fillConvexPoly(canvas, polygon, [int(float(c) * 0.6) for c in color])

    for idx_kp, kp in enumerate(kps):
        color = color_list[idx_kp]
        x, y = kp
        cv2.circle(canvas, (int(x), int(y)), 4, color, -1)

    return canvas



import os
import pathlib
import shutil
import cv2
import numpy as np
from scipy.ndimage.filters import median_filter

def get_ffmpeg_exe():
    if os.name == 'nt':  # Windows
        return 'ffmpeg'
    else:  # Ubuntu and other Unix-based systems
        return 'ffmpeg'


def median_filter_3d(video_tensor, kernel_size, device):
    _, video_length, height, width = video_tensor.shape

    pad_size = kernel_size // 2
    video_tensor = func.pad(video_tensor, (pad_size, pad_size, pad_size, pad_size, pad_size, pad_size), mode='reflect')

    filtered_video_tensor = []
    for i in tqdm.tqdm(range(video_length), desc='Median Filtering'):
        video_segment = video_tensor[:, i:i + kernel_size, ...].to(device)
        video_segment = video_segment.unfold(dimension=2, size=kernel_size, step=1)
        video_segment = video_segment.unfold(dimension=3, size=kernel_size, step=1)
        video_segment = video_segment.permute(0, 2, 3, 1, 4, 5).reshape(3, height, width, -1)
        filtered_video_frame = torch.median(video_segment, dim=-1)[0]
        filtered_video_tensor.append(filtered_video_frame.cpu())
    filtered_video_tensor = torch.stack(filtered_video_tensor, dim=1)
    return filtered_video_tensor


def save_video(video_tensor, audio_path, output_path, device, fps=30.0):
    pathlib.Path(output_path).parent.mkdir(exist_ok=True, parents=True)

    video_tensor = video_tensor[0, ...]
    _, num_frames, height, width = video_tensor.shape

    video_tensor = median_filter_3d(video_tensor, kernel_size=3, device=device)
    video_tensor = video_tensor.permute(1, 2, 3, 0)
    video_frames = (video_tensor * 255).numpy().astype(np.uint8)

    output_name = pathlib.Path(output_path).stem
    temp_output_path = output_path.replace(output_name, output_name + '-temp')
    video_writer = cv2.VideoWriter(temp_output_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (width, height))

    for i in tqdm.tqdm(range(num_frames), 'Writing frames into file'):
        frame_image = video_frames[i, ...]
        frame_image = cv2.cvtColor(frame_image, cv2.COLOR_RGB2BGR)
        video_writer.write(frame_image)
    video_writer.release()

    cmd = (f'{get_ffmpeg_exe()} -i "{temp_output_path}" -i "{audio_path}" '
           f'-map 0:v -map 1:a -c:v h264 -shortest -y "{output_path}" -loglevel quiet')
    os.system(cmd)

    os.remove(temp_output_path)



def compute_dist(x1, y1, x2, y2):
    return math.sqrt((x1 - x2) ** 2 + (y1 - y2) ** 2)


def compute_ratio(kps):
    l_eye_x, l_eye_y = kps[0][0], kps[0][1]
    r_eye_x, r_eye_y = kps[1][0], kps[1][1]
    nose_x, nose_y = kps[2][0], kps[2][1]
    d_left = compute_dist(l_eye_x, l_eye_y, nose_x, nose_y)
    d_right = compute_dist(r_eye_x, r_eye_y, nose_x, nose_y)
    ratio = d_left / (d_right + 1e-6)
    return ratio


def point_to_line_dist(point, line_points):
    point = np.array(point)
    line_points = np.array(line_points)
    line_vec = line_points[1] - line_points[0]
    point_vec = point - line_points[0]
    line_norm = line_vec / np.sqrt(np.sum(line_vec ** 2))
    point_vec_scaled = point_vec * 1.0 / np.sqrt(np.sum(line_vec ** 2))
    t = np.dot(line_norm, point_vec_scaled)
    if t < 0.0:
        t = 0.0
    elif t > 1.0:
        t = 1.0
    nearest = line_points[0] + t * line_vec
    dist = np.sqrt(np.sum((point - nearest) ** 2))
    return dist


def get_face_size(kps):
    # 0: left eye, 1: right eye, 2: nose
    A = kps[0, :]
    B = kps[1, :]
    C = kps[2, :]

    AB_dist = math.sqrt((A[0] - B[0]) ** 2 + (A[1] - B[1]) ** 2)
    C_AB_dist = point_to_line_dist(C, [A, B])
    return AB_dist, C_AB_dist


def get_rescale_params(kps_ref, kps_target):
    kps_ref = np.array(kps_ref)
    kps_target = np.array(kps_target)

    ref_AB_dist, ref_C_AB_dist = get_face_size(kps_ref)
    target_AB_dist, target_C_AB_dist = get_face_size(kps_target)

    scale_width = ref_AB_dist / target_AB_dist
    scale_height = ref_C_AB_dist / target_C_AB_dist

    return scale_width, scale_height


def retarget_kps(ref_kps, tgt_kps_list, only_offset=True):
    ref_kps = np.array(ref_kps)
    tgt_kps_list = np.array(tgt_kps_list)

    ref_ratio = compute_ratio(ref_kps)

    ratio_delta = 10000
    selected_tgt_kps_idx = None
    for idx, tgt_kps in enumerate(tgt_kps_list):
        tgt_ratio = compute_ratio(tgt_kps)
        if math.fabs(tgt_ratio - ref_ratio) < ratio_delta:
            selected_tgt_kps_idx = idx
            ratio_delta = tgt_ratio

    scale_width, scale_height = get_rescale_params(
        kps_ref=ref_kps,
        kps_target=tgt_kps_list[selected_tgt_kps_idx],
    )

    rescaled_tgt_kps_list = np.array(tgt_kps_list)
    rescaled_tgt_kps_list[:, :, 0] *= scale_width
    rescaled_tgt_kps_list[:, :, 1] *= scale_height

    if only_offset:
        nose_offset = rescaled_tgt_kps_list[:, 2, :] - rescaled_tgt_kps_list[0, 2, :]
        nose_offset = nose_offset[:, np.newaxis, :]
        ref_kps_repeat = np.tile(ref_kps, (tgt_kps_list.shape[0], 1, 1))

        ref_kps_repeat[:, :, :] -= (nose_offset / 2.0)
        rescaled_tgt_kps_list = ref_kps_repeat
    else:
        nose_offset_x = rescaled_tgt_kps_list[0, 2, 0] - ref_kps[2][0]
        nose_offset_y = rescaled_tgt_kps_list[0, 2, 1] - ref_kps[2][1]

        rescaled_tgt_kps_list[:, :, 0] -= nose_offset_x
        rescaled_tgt_kps_list[:, :, 1] -= nose_offset_y

    return rescaled_tgt_kps_list