Monsia commited on
Commit
3eb06b2
1 Parent(s): 1f0d729

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +20 -8
README.md CHANGED
@@ -8,15 +8,27 @@ license: apache-2.0
8
 
9
  metrics:
10
  - accuracy
11
- - f1-score
12
  ---
13
 
14
  # camembert-fr-covid-tweet-classification
15
  This model is a fine-tune checkpoint of [Yanzhu/bertweetfr-base](https://huggingface.co/Yanzhu/bertweetfr-base), fine-tuned on SST-2.
16
- This model reaches an accuracy of 66.0 on the dev ~set (for comparison, Bert bert-base-uncased version reaches an accuracy of 92.7)~.
17
- # Fine-tuning hyper-parameters
18
- - learning_rate = 1e-5
19
- - batch_size = 32
20
- - warmup = 600
21
- - max_seq_length = 128
22
- - num_train_epochs = 3.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
 
9
  metrics:
10
  - accuracy
 
11
  ---
12
 
13
  # camembert-fr-covid-tweet-classification
14
  This model is a fine-tune checkpoint of [Yanzhu/bertweetfr-base](https://huggingface.co/Yanzhu/bertweetfr-base), fine-tuned on SST-2.
15
+ This model reaches an accuracy of 66.00% on the dev set.
16
+
17
+ In this dataset, given a tweet, the goal was to infer the underlying topic of the tweet by choosing from four topics classes:
18
+ - chiffres : this means, the tweet talk about statistics of covid.
19
+ - mesures : this means, the tweet talk about measures take by government of covid
20
+ - opinions : this means, the tweet talk about opinion of people like fake new.
21
+ - symptomes : this means, the tweet talk about symptoms or variant of covid.
22
+ - divers : or other
23
+
24
+ # Pipelining the Model
25
+
26
+ ```python
27
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
28
+ tokenizer = AutoTokenizer.from_pretrained("Monsia/camembert-fr-covid-tweet-classification")
29
+ model = AutoModelForSequenceClassification.from_pretrained("Monsia/camembert-fr-covid-tweet-classification")
30
+ nlp_topic_classif = transformers.pipeline('topics-classification', model = model, tokenizer = tokenizer)
31
+ nlp_topic_classif("tchai on est morts. on va se faire vacciner et ils vont contrôler comme les marionnettes avec des fils. d'après les '' ont dit ''...")
32
+ # Output: [{'label': 'opinions', 'score': 0.93153977394104}]
33
+ ```
34
+