nazneen commited on
Commit
848ecad
·
1 Parent(s): a1ff066

model documentation

Browse files
Files changed (1) hide show
  1. README.md +155 -9
README.md CHANGED
@@ -1,26 +1,175 @@
1
  ---
2
  language:
3
  - ru
 
4
  tags:
5
  - sentiment
6
  - text-classification
 
7
  datasets:
8
  - Tatyana/ru_sentiment_dataset
9
  ---
10
 
11
- # RuBERT for Sentiment Analysis
12
- Russian texts sentiment classification.
13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14
  Model trained on [Tatyana/ru_sentiment_dataset](https://huggingface.co/datasets/Tatyana/ru_sentiment_dataset)
 
 
 
 
 
 
 
 
 
 
 
15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16
  ## Labels meaning
17
  0: NEUTRAL
18
  1: POSITIVE
19
  2: NEGATIVE
20
 
21
- ## How to use
22
- ```python
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24
  !pip install tensorflow-gpu
25
  !pip install deeppavlov
26
  !python -m deeppavlov install squad_bert
@@ -32,9 +181,6 @@ from deeppavlov import build_model
32
 
33
  model = build_model(path_to_model/rubert_sentiment.json)
34
  model(["Сегодня хорошая погода", "Я счастлив проводить с тобою время", "Мне нравится эта музыкальная композиция"])
 
 
35
 
36
- ```
37
-
38
- Needed pytorch trained model presented in [Drive](https://drive.google.com/drive/folders/1EnJBq0dGfpjPxbVjybqaS7PsMaPHLUIl?usp=sharing).
39
-
40
- Load and place model.pth.tar in folder next to another files of a model.
 
1
  ---
2
  language:
3
  - ru
4
+
5
  tags:
6
  - sentiment
7
  - text-classification
8
+
9
  datasets:
10
  - Tatyana/ru_sentiment_dataset
11
  ---
12
 
 
 
13
 
14
+ # Model Card for RuBERT for Sentiment Analysis
15
+
16
+ # Model Details
17
+
18
+ ## Model Description
19
+
20
+ Russian texts sentiment classification.
21
+
22
+ - **Developed by:** Tatyana Voloshina
23
+ - **Shared by [Optional]:** Tatyana Voloshina
24
+ - **Model type:** Text Classification
25
+ - **Language(s) (NLP):** More information needed
26
+ - **License:** More information needed
27
+ - **Parent Model:** BERT
28
+ - **Resources for more information:**
29
+ - [GitHub Repo](https://github.com/T-Sh/Sentiment-Analysis)
30
+
31
+
32
+
33
+ # Uses
34
+
35
+
36
+ ## Direct Use
37
+ This model can be used for the task of text classification.
38
+
39
+ ## Downstream Use [Optional]
40
+
41
+ More information needed.
42
+
43
+ ## Out-of-Scope Use
44
+
45
+ The model should not be used to intentionally create hostile or alienating environments for people.
46
+
47
+ # Bias, Risks, and Limitations
48
+
49
+
50
+ Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups.
51
+
52
+
53
+
54
+ ## Recommendations
55
+
56
+
57
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
58
+
59
+ # Training Details
60
+
61
+ ## Training Data
62
+
63
  Model trained on [Tatyana/ru_sentiment_dataset](https://huggingface.co/datasets/Tatyana/ru_sentiment_dataset)
64
+
65
+ ## Training Procedure
66
+
67
+
68
+ ### Preprocessing
69
+
70
+ More information needed
71
+
72
+
73
+ ### Speeds, Sizes, Times
74
+ More information needed
75
 
76
+
77
+ # Evaluation
78
+
79
+
80
+ ## Testing Data, Factors & Metrics
81
+
82
+ ### Testing Data
83
+
84
+ More information needed
85
+
86
+
87
+ ### Factors
88
+ More information needed
89
+
90
+ ### Metrics
91
+
92
+ More information needed
93
+
94
+
95
+ ## Results
96
+
97
+ More information needed
98
+
99
+
100
+ # Model Examination
101
+
102
  ## Labels meaning
103
  0: NEUTRAL
104
  1: POSITIVE
105
  2: NEGATIVE
106
 
107
+
108
+ # Environmental Impact
109
+
110
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
111
+
112
+ - **Hardware Type:** More information needed
113
+ - **Hours used:** More information needed
114
+ - **Cloud Provider:** More information needed
115
+ - **Compute Region:** More information needed
116
+ - **Carbon Emitted:** More information needed
117
+
118
+ # Technical Specifications [optional]
119
+
120
+ ## Model Architecture and Objective
121
+
122
+ More information needed
123
+
124
+ ## Compute Infrastructure
125
+
126
+ More information needed
127
+
128
+ ### Hardware
129
+
130
+
131
+ More information needed
132
+
133
+ ### Software
134
+
135
+ More information needed.
136
+
137
+ # Citation
138
 
139
+ More information needed.
140
+
141
+
142
+
143
+
144
+ # Glossary [optional]
145
+ More information needed
146
+
147
+ # More Information [optional]
148
+ More information needed
149
+
150
+
151
+ # Model Card Authors [optional]
152
+
153
+ Tatyana Voloshina in collaboration with Ezi Ozoani and the Hugging Face team
154
+
155
+
156
+ # Model Card Contact
157
+
158
+ More information needed
159
+
160
+ # How to Get Started with the Model
161
+
162
+ Use the code below to get started with the model.
163
+
164
+ <details>
165
+ <summary> Click to expand </summary>
166
+
167
+ Needed pytorch trained model presented in [Drive](https://drive.google.com/drive/folders/1EnJBq0dGfpjPxbVjybqaS7PsMaPHLUIl?usp=sharing).
168
+
169
+ Load and place model.pth.tar in folder next to another files of a model.
170
+
171
+ ```python
172
+
173
  !pip install tensorflow-gpu
174
  !pip install deeppavlov
175
  !python -m deeppavlov install squad_bert
 
181
 
182
  model = build_model(path_to_model/rubert_sentiment.json)
183
  model(["Сегодня хорошая погода", "Я счастлив проводить с тобою время", "Мне нравится эта музыкальная композиция"])
184
+ ```
185
+ </details>
186