MohamedMaged262 commited on
Commit
01c9c37
1 Parent(s): 26ffe84

Upload 3 files

Browse files
Model_Testing.py ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gym
2
+ import pickle
3
+ import time
4
+ import numpy as np
5
+
6
+ # Load the saved model
7
+ with open("q_learning_model.pkl", "rb") as f:
8
+ model_data = pickle.load(f)
9
+
10
+ Q_table = model_data["Q_table"]
11
+ state_bins = model_data["state_bins"]
12
+
13
+ def discretize_state(state):
14
+ state_low = env.observation_space.low
15
+ state_high = env.observation_space.high
16
+ bins = [np.linspace(state_low[i], state_high[i], state_bins[i]) for i in range(len(state))]
17
+ state_indices = [np.digitize(state[i], bins[i]) - 1 for i in range(len(state))]
18
+ return tuple(state_indices)
19
+
20
+ env = gym.make("MountainCar-v0", render_mode="human")
21
+
22
+ test_episodes = 10
23
+
24
+ for episode in range(test_episodes):
25
+ state, _ = env.reset()
26
+ state = discretize_state(state)
27
+ done = False
28
+ total_reward = 0
29
+
30
+ print(f"Testing Episode {episode + 1}")
31
+
32
+ while not done:
33
+ action = np.argmax(Q_table[state])
34
+ next_state, reward, done, truncated, _ = env.step(action)
35
+ state = discretize_state(next_state)
36
+ total_reward += reward
37
+
38
+
39
+ env.render()
40
+ time.sleep(0.03)
41
+
42
+ print(f"Total reward for Episode {episode + 1}: {total_reward}")
43
+
44
+ env.close()
Mohamed Maged (221101329) (Ais) Task 7 Advanced machine.ipynb ADDED
@@ -0,0 +1,369 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": null,
6
+ "metadata": {},
7
+ "outputs": [
8
+ {
9
+ "name": "stdout",
10
+ "output_type": "stream",
11
+ "text": [
12
+ "Initial State: (0, 0)\n"
13
+ ]
14
+ }
15
+ ],
16
+ "source": [
17
+ "import numpy as np\n",
18
+ "\n",
19
+ "class Gridworld:\n",
20
+ " def __init__(self):\n",
21
+ " self.grid_size = 5\n",
22
+ " self.start_state = (0, 0)\n",
23
+ " self.goal_state = (4, 4)\n",
24
+ " self.obstacles = [(2, 2), (3, 3)]\n",
25
+ " self.state = self.start_state\n",
26
+ "\n",
27
+ " def reset(self):\n",
28
+ " self.state = self.start_state\n",
29
+ " return self.state\n",
30
+ "\n",
31
+ " def step(self, action):\n",
32
+ " actions = {\n",
33
+ " 0: (-1, 0), \n",
34
+ " 1: (1, 0), \n",
35
+ " 2: (0, -1), \n",
36
+ " 3: (0, 1) \n",
37
+ " }\n",
38
+ " next_state = (self.state[0] + actions[action][0],\n",
39
+ " self.state[1] + actions[action][1])\n",
40
+ "\n",
41
+ " if 0 <= next_state[0] < self.grid_size and 0 <= next_state[1] < self.grid_size:\n",
42
+ " self.state = next_state\n",
43
+ "\n",
44
+ " if self.state == self.goal_state:\n",
45
+ " return self.state, 100, True \n",
46
+ " elif self.state in self.obstacles:\n",
47
+ " return self.state, -10, False \n",
48
+ " else:\n",
49
+ " return self.state, -1, False \n",
50
+ "\n",
51
+ "env = Gridworld()\n",
52
+ "print(\"Initial State:\", env.reset())\n"
53
+ ]
54
+ },
55
+ {
56
+ "cell_type": "code",
57
+ "execution_count": null,
58
+ "metadata": {},
59
+ "outputs": [],
60
+ "source": [
61
+ "# Q-Learning parameters\n",
62
+ "episodes = 500\n",
63
+ "alpha = 0.1 \n",
64
+ "gamma = 0.9 \n",
65
+ "epsilon = 0.2 \n",
66
+ "actions = [0, 1, 2, 3]\n",
67
+ "\n",
68
+ "# Initialize Q-table\n",
69
+ "Q_table = np.zeros((5, 5, len(actions)))\n",
70
+ "\n",
71
+ "# Q-Learning function\n",
72
+ "def train_gridworld(env):\n",
73
+ " for episode in range(episodes):\n",
74
+ " state = env.reset()\n",
75
+ " done = False\n",
76
+ "\n",
77
+ " while not done:\n",
78
+ " # Epsilon-greedy action selection\n",
79
+ " if np.random.uniform(0, 1) < epsilon:\n",
80
+ " action = np.random.choice(actions)\n",
81
+ " else:\n",
82
+ " action = np.argmax(Q_table[state[0], state[1], :])\n",
83
+ "\n",
84
+ " # Take action\n",
85
+ " next_state, reward, done = env.step(action)\n",
86
+ "\n",
87
+ " # Update Q-value\n",
88
+ " Q_table[state[0], state[1], action] = Q_table[state[0], state[1], action] + \\\n",
89
+ " alpha * (reward + gamma * np.max(Q_table[next_state[0], next_state[1], :]) -\n",
90
+ " Q_table[state[0], state[1], action])\n",
91
+ "\n",
92
+ " state = next_state\n",
93
+ "\n",
94
+ "train_gridworld(env)\n"
95
+ ]
96
+ },
97
+ {
98
+ "cell_type": "code",
99
+ "execution_count": null,
100
+ "metadata": {},
101
+ "outputs": [
102
+ {
103
+ "name": "stdout",
104
+ "output_type": "stream",
105
+ "text": [
106
+ "['↓', '↓', '↓', '↓', '↓']\n",
107
+ "['→', '↓', '→', '→', '↓']\n",
108
+ "['→', '↓', '←', '→', '↓']\n",
109
+ "['→', '→', '↓', '→', '↓']\n",
110
+ "['→', '→', '→', '→', '↑']\n"
111
+ ]
112
+ }
113
+ ],
114
+ "source": [
115
+ "policy = np.argmax(Q_table, axis=2)\n",
116
+ "actions_mapping = {0: '↑', 1: '↓', 2: '←', 3: '→'}\n",
117
+ "\n",
118
+ "for row in policy:\n",
119
+ " print([actions_mapping[action] for action in row])\n"
120
+ ]
121
+ },
122
+ {
123
+ "cell_type": "code",
124
+ "execution_count": null,
125
+ "metadata": {},
126
+ "outputs": [
127
+ {
128
+ "name": "stdout",
129
+ "output_type": "stream",
130
+ "text": [
131
+ "State space: Box([-1.2 -0.07], [0.6 0.07], (2,), float32)\n",
132
+ "Action space: Discrete(3)\n"
133
+ ]
134
+ },
135
+ {
136
+ "data": {
137
+ "text/plain": [
138
+ "array([[[255, 255, 255],\n",
139
+ " [255, 255, 255],\n",
140
+ " [255, 255, 255],\n",
141
+ " ...,\n",
142
+ " [255, 255, 255],\n",
143
+ " [255, 255, 255],\n",
144
+ " [255, 255, 255]],\n",
145
+ "\n",
146
+ " [[255, 255, 255],\n",
147
+ " [255, 255, 255],\n",
148
+ " [255, 255, 255],\n",
149
+ " ...,\n",
150
+ " [255, 255, 255],\n",
151
+ " [255, 255, 255],\n",
152
+ " [255, 255, 255]],\n",
153
+ "\n",
154
+ " [[255, 255, 255],\n",
155
+ " [255, 255, 255],\n",
156
+ " [255, 255, 255],\n",
157
+ " ...,\n",
158
+ " [255, 255, 255],\n",
159
+ " [255, 255, 255],\n",
160
+ " [255, 255, 255]],\n",
161
+ "\n",
162
+ " ...,\n",
163
+ "\n",
164
+ " [[255, 255, 255],\n",
165
+ " [255, 255, 255],\n",
166
+ " [255, 255, 255],\n",
167
+ " ...,\n",
168
+ " [255, 255, 255],\n",
169
+ " [255, 255, 255],\n",
170
+ " [255, 255, 255]],\n",
171
+ "\n",
172
+ " [[255, 255, 255],\n",
173
+ " [255, 255, 255],\n",
174
+ " [255, 255, 255],\n",
175
+ " ...,\n",
176
+ " [255, 255, 255],\n",
177
+ " [255, 255, 255],\n",
178
+ " [255, 255, 255]],\n",
179
+ "\n",
180
+ " [[255, 255, 255],\n",
181
+ " [255, 255, 255],\n",
182
+ " [255, 255, 255],\n",
183
+ " ...,\n",
184
+ " [255, 255, 255],\n",
185
+ " [255, 255, 255],\n",
186
+ " [255, 255, 255]]], dtype=uint8)"
187
+ ]
188
+ },
189
+ "execution_count": 4,
190
+ "metadata": {},
191
+ "output_type": "execute_result"
192
+ }
193
+ ],
194
+ "source": [
195
+ "import gym\n",
196
+ "import matplotlib.pyplot as plt\n",
197
+ "\n",
198
+ "env = gym.make(\"MountainCar-v0\", render_mode=\"rgb_array\")\n",
199
+ "\n",
200
+ "print(\"State space:\", env.observation_space)\n",
201
+ "print(\"Action space:\", env.action_space)\n",
202
+ "\n",
203
+ "state = env.reset()\n",
204
+ "env.render()\n"
205
+ ]
206
+ },
207
+ {
208
+ "cell_type": "code",
209
+ "execution_count": null,
210
+ "metadata": {},
211
+ "outputs": [
212
+ {
213
+ "name": "stderr",
214
+ "output_type": "stream",
215
+ "text": [
216
+ "C:\\Users\\moham\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\gym\\utils\\passive_env_checker.py:233: DeprecationWarning: `np.bool8` is a deprecated alias for `np.bool_`. (Deprecated NumPy 1.24)\n",
217
+ " if not isinstance(terminated, (bool, np.bool8)):\n"
218
+ ]
219
+ },
220
+ {
221
+ "name": "stdout",
222
+ "output_type": "stream",
223
+ "text": [
224
+ "Model saved as 'q_learning_model.pkl'\n"
225
+ ]
226
+ }
227
+ ],
228
+ "source": [
229
+ "import pickle\n",
230
+ "\n",
231
+ "state_bins = [20, 20]\n",
232
+ "action_space = env.action_space.n\n",
233
+ "Q_table = np.random.uniform(low=-1, high=1, size=(state_bins[0], state_bins[1], action_space))\n",
234
+ "\n",
235
+ "def discretize_state(state):\n",
236
+ " state_low = env.observation_space.low\n",
237
+ " state_high = env.observation_space.high\n",
238
+ " bins = [np.linspace(state_low[i], state_high[i], state_bins[i]) for i in range(len(state))]\n",
239
+ " state_indices = [np.digitize(state[i], bins[i]) - 1 for i in range(len(state))]\n",
240
+ " return tuple(state_indices)\n",
241
+ "\n",
242
+ "# Initialize Q-learning parameters\n",
243
+ "alpha = 0.1\n",
244
+ "gamma = 0.99\n",
245
+ "epsilon = 0.2\n",
246
+ "episodes = 5000\n",
247
+ "epsilon_decay = 0.995\n",
248
+ "\n",
249
+ "total_rewards = []\n",
250
+ "\n",
251
+ "# Train the agent\n",
252
+ "for episode in range(episodes):\n",
253
+ " state, _ = env.reset()\n",
254
+ " state = discretize_state(state)\n",
255
+ " done = False\n",
256
+ " total_reward = 0\n",
257
+ "\n",
258
+ " while not done:\n",
259
+ " # Epsilon-greedy action selection\n",
260
+ " if np.random.uniform(0, 1) < epsilon:\n",
261
+ " action = np.random.choice(action_space)\n",
262
+ " else:\n",
263
+ " action = np.argmax(Q_table[state])\n",
264
+ "\n",
265
+ " # Take action\n",
266
+ " next_state, reward, done, _, _ = env.step(action)\n",
267
+ " next_state = discretize_state(next_state)\n",
268
+ " total_reward += reward\n",
269
+ "\n",
270
+ " # Update Q-value\n",
271
+ " Q_table[state + (action,)] += alpha * (\n",
272
+ " reward + gamma * np.max(Q_table[next_state]) - Q_table[state + (action,)]\n",
273
+ " )\n",
274
+ " state = next_state\n",
275
+ "\n",
276
+ " # Decay epsilon\n",
277
+ " epsilon = max(0.01, epsilon * epsilon_decay)\n",
278
+ "\n",
279
+ " total_rewards.append(total_reward)\n",
280
+ "\n",
281
+ "# Save the model as a .pkl file\n",
282
+ "model_data = {\n",
283
+ " \"Q_table\": Q_table,\n",
284
+ " \"state_bins\": state_bins,\n",
285
+ " \"alpha\": alpha,\n",
286
+ " \"gamma\": gamma,\n",
287
+ " \"epsilon_decay\": epsilon_decay,\n",
288
+ "}\n",
289
+ "with open(\"q_learning_model.pkl\", \"wb\") as f:\n",
290
+ " pickle.dump(model_data, f)\n",
291
+ "\n",
292
+ "print(\"Model saved as 'q_learning_model.pkl'\")\n"
293
+ ]
294
+ },
295
+ {
296
+ "cell_type": "code",
297
+ "execution_count": null,
298
+ "metadata": {},
299
+ "outputs": [
300
+ {
301
+ "name": "stdout",
302
+ "output_type": "stream",
303
+ "text": [
304
+ "Total reward: -140.0\n"
305
+ ]
306
+ },
307
+ {
308
+ "data": {
309
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAFeCAYAAAAYIxzjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAwIklEQVR4nO3dd3RU5aL+8Wdm0iYBISGBACGhSEsAAQExtEBUWgARBRG4ENRrQVHxqNdyztF7LcfjAbGB7dAEBARFOkoQEAuIgDSDtAASIKEkkDqTmf37wwM/C2qASXYm+/tZK2u5AjPzLJlkP/Put9gMwzAEAAAsy252AAAAYC7KAAAAFkcZAADA4igDAABYHGUAAACLowwAAGBxlAEAACyOMgAAgMVRBgAAsDjKAAAAFkcZAADA4igDAABYHGUAAACLowwAAGBxlAEAACyOMgAAgMVRBgAAsDjKAAAAFkcZAADA4igDAABYHGUAAACLCzA7AAAAVmEYxgW/b7PZyjnJL1EGAAAoJx7PSe3c2UJhYR0UGtpBYWHtFRraVjZbkGy2ANlsgf/5Kt9yYDN+r6YAAACfcruztW1bzV99N0BOZys5na0UGtpKTmdLBQTUkMNR7fyXzVa2n90pAwAAlJMLl4HfCgqqr6CghgoObqjg4AYKCqqnwMB6Cgqqq6CgurLbQ32aizIAAEA5KW0Z+DWHI1wBATUVEBClwMAoBQU1VEhIc4WENJPT2UwBATUuKxdzBgAAqOA8ntPyeE6ruHi3JMlmC5LdHia7PVR2e5hiYv6l6tX7XfLzUwYAAKjgfppUGCybLVh2e7CCgxsrLOwahYa2V1hYewUFxVzW81MGAACoYByO6nI4IhQQEC6HI0IhIU3ldLaU05kgp7OFHI5qPn09ygAAAKayKygo9mdf9RQU1EBBQXEKDq6voKA42e3BZZqAMgAAQDmy2ULkdCYoJCRBTme8QkKaKyAgUg5HDQUERCggoIZstvLdIJgyAABAOTlzRnr22daaO3fhf+7/h/xnLgA7EAIAYAler3TyZJACA2uZHeUXOKgIAACLowwAAGBxlAEAACyOMgAAgMUxgRAAgMtw4MABnT17tlR/NycnR/n5+dq2bZvPczRp0kQhISGX9FgOKgIA4DL07t1bK1asMDuGtm3bppYtW17SY7lNAACAxVEGAACwOMoAAAAWRxkAAMDiKAMAAFgcZQAAAIujDAAAYHGUAQAALI4dCAEAKANVq1ZVlSpVFBgYKElyuVzKy8tTXl5eqR4fEBCgatWqyel0yuFwyOPxqLCwUGfOnJHb7fZpVsoAAAA+FBwcrCuvvFLx8fGqW7euqlatKsMwlJeXp4MHD2rRokUKCAhQcXHx7z5HjRo11LJlSzVq1EiRkZEKCQlRcXGxTp48qX379mnHjh3KysryWWbKAAAAPhISEqJrrrlGHTp0UGhoqGw22/k/q169ugIDAxUZGalmzZppw4YNKioq+s1z1KxZUykpKapbt64cDscvnrtu3bqKjo5Wo0aNtHTpUmVmZvokN3MGAADwkfr16ysxMVFhYWG/KAI/FxISosTERMXFxV3wz/v376969er9ogj8nMPhUN26dXXjjTf6KjZlAAAAX6hdu7ZuueUWBQcH/+nfDQ4O1uDBgxUdHX3+ew6HQ0OHDlXdunV/t0j8XFRUlEaNGvW7peFiUAYAALhMdrtdiYmJF3Vhdjgc6tSp0/kLf8OGDVWrVq1SFQFJstlsqlGjhpo2bXpJmX+OMgAAwGWy2Wxq0aLFRT8uISFBdvtPl+I6deqoevXqF/X4qlWrKjY29qJf99coAwAAWBxlAACAyzBt2jTt3r271MP7P2e32/XDDz/owIEDeuihhy7p9VNTU3XgwIHLul3A0kIAAC5DrVq1VKNGDTmdThUWFl7UY51Op+Li4uRwOJSZmXl+c6HSstvtioyMVP369S8y9a+e57IeDQAAZLfblZycfNGPS05OPj9noFmzZr9YXVAa5zYnulyUAQAALpPdblfz5s2VkJBQ6se0aNFCzZs3P397ISIiQomJiQoJCSnV4wMCAtS5c2dFRUVdUuafowwAAOADoaGh6tq1q2JiYv7079arV09dunRRaGjoL74fHx+vbt26ler1unTpolatWl1S1l+jDAAA4CORkZHq27evYmNj5XA4fjGp0GazyeFwqGbNmurbt68iIyMv+Bzt2rVTv3795HQ6fzMp0WazKSQkRL169VLHjh19lttmGIbhs2cDAMDizl1Wd+3apd27d+vkyZOSfrq/X6NGDf3tb3/TmjVr5Ha7VVRUJIfDIcMwZBiGPB6PXC6XnE6n8vLytGPHDv34448qLi5WaGioYmJidNVVVykiIkKSLmkFw4WwmgAAAB86d4FOSEhQ06ZNdfLkSR09elTHjh3T8ePHlZ2drZkzZyo3N1dHjhxRdHS0DMOQ1+tVXl6eDh8+rPj4eAUGBiogIOD8aMAVV1whSTpw4ICys7MVGBio+vXr+2Q7YsoAAAA+kp+fr82bN2vr1q06c+aMjh8/ruDgYLlcLp09e1Z16tSRy+VSTk7O+aOOr7jiCjkcjvMjBI0aNZLT6ZTL5VJxcbGKiop05swZnThxQm63Wy6XS3l5edq3b58aNGiguLg4NWrU6Px/h4WFXXRubhMAAHCJDMPQ5s2btWPHDn399dfKyMhQRESEatasqWuvvVYxMTGqUqWKQkNDFRQUpNDQUGVmZiohIeGiPtEbhqHCwsLzXwUFBcrJyVFhYaEyMjKUkZGhvXv3KiMjQ506dVJSUpISExPPjyb8GcoAAAClYBiG3G633G63Tp48qcWLF2vhwoXKyclR7969lZSUpJYtW8rpdMrhcCgwMPA3kwjLIlNJScn5r8LCQq1fv15paWnauHGjmjRpolmzZv3p81AGAAD4A16vVydOnFBGRoZWr16tPXv26NChQ+rdu7dSUlLUqFGj8xsHSb6b1Hepzl3WXS6XNm/erGuvvfZPH0MZAADgAs6ePat9+/bpu+++048//qhTp04pKipKycnJateunekXfV+iDAAA8DMFBQX65JNPtGLFCkVERCguLk7x8fFKSEg4v6SvsqEMAAAs79ylcPny5Zo5c6YiIiLUu3dvXXXVVapZs6aCgoJMTli2KAMAAMs6t7Z/xYoVeuedd9SsWTPdfffduvLKKxUYGPiLuQCVGWUAAGBJR48e1bZt27RkyRKVlJTovvvuU/PmzS1TAH6OMgAAsJTMzEx9/vnn2rNnj0pKSpSSkqI2bdr4ZCc/f0UZAABYgsvl0ieffKKFCxcqPj5eiYmJatOmjYKDg82OZjrKAACgUjMMQ/n5+XrmmWd09uxZDR06VFdffbXCwsIq1fLAy8HZBACASqmkpES5ublatWqVXnnlFf3P//yPevfuff7wH/x/lAEAQKXjdruVlpamDz74QA0bNtSKFStKvU+/FXGbAABQqRw8eFBz585VcXGxOnTooKSkJOYF/AlGBgAAlYJhGFqxYoU++eQTde3aVYmJiapVq5bZsfwCZQAA4NcMw9Dhw4f19NNPq1q1ahozZowaNGhg6aWCF4vbBAAAv+V2u7V//36NHz9eCQkJGjNmTJkfG1wZUQYAAH4pKytLa9eu1erVq5WamqoOHTqYHclvUQYAAH5n9+7d+vjjjxUWFqYhQ4YoMjLS7Eh+jTkDAAC/4fV6lZaWpjlz5ui2225TYmKinE6n2bH8HmUAAOAX3G63Zs6cqQ0bNujFF19UeHg4kwR9hDIAAKjQvF6vjh8/rn//+98KDg7W5MmTJYlJgj5EGQAAVFhFRUX64osvtHbtWrVu3Vr9+vWjBJQBygAAoELyer36+OOPtWLFCt17771q06aNAgK4bJUFVhMAACqkV199Vfn5+Ro8eLAaNWpkdpxKjTIAAKgwDMNQUVGRnn/+ecXExOi//uu/WC1QDhhvAQBUCB6PRz/88INmzZqlli1bauDAgQoKCjI7liVQBgAApjMMQ5s2bdJbb72lIUOG6LrrrmPZYDniNgEAwHSfffaZVq9ereTkZCUlJZkdx3IoAwAA0xiGoYULF2rr1q26/fbbFRsba3YkS6IMAABM4Xa7tXjxYu3evVt33HGHIiMj2UPAJJQBAEC5MgxDbrdbCxYs0OHDh5WamqqoqCizY1kaEwgBAOVu0qRJOnPmjMaOHavq1aubHcfyGBkAAJSb4uJi/fWvf1WbNm3Ur18/ValSxexIEGUAAFAODMNQQUGBnnvuOXXt2lXXXXcdWwtXIJQBAECZMgxDp0+f1tSpU9WwYUMNGDBAdrvd7Fj4GWoZAKBMZWVlacqUKYqJidHAgQPNjoMLoJoBAMpMVlaW3nzzTUVHR2vEiBFmx8HvYGQAAFAmjh8/rkmTJqlbt27q3r272XHwBygDAACfMgxDJ0+e1DvvvKPk5GR17tyZzYQqOMoAAMBnzhWB2bNnq3Xr1urSpQtFwA9QBgAAPpORkaE5c+aoYcOGSklJMTsOSokJhAAAnzh16pQmTpyounXrasiQIWbHwUVgnwEAwGU7e/asXnjhBSUnJ6tHjx7cGvAz3CYAAFwywzBUVFSkN954Q507d1ZSUhJFwA9RBgAAl8zlcmnWrFmKjIxU7969KQJ+ijkDAIBL4vV6NX36dOXk5Gj06NEUAT/GyAAA4JJMmDBBNptN999/P2cN+DkmEAIALtrkyZNlt9s1YsQIhYaGmh0Hl4mRAQBAqXk8Hi1atEgej0e33XabnE6n2ZHgA4zrAABKxePx6IsvvtC+fft00003qVq1aswTqCQoAwCAP2UYhjZt2qT169erf//+qlOnjtmR4EOUAQDAn1qyZIkmTpyogQMHqkmTJmbHgY8xZwAA8LsMw9DBgwc1f/58PfXUU2revLnZkVAGWE0AALggwzCUnZ2tf/zjH7r99tsVHx/PHIFKipEBAMAFnT17VtOnT1dycrISEhLMjoMyxJwBAMBvuFwuzZ49WzVr1tR1111ndhyUMUYGAAC/8eabb8put2vQoEEKDg42Ow7KGGUAAHCeYRh67rnnlJ6erjfffFNVqlQxOxLKAWUAACDpp02F1q1bp8LCQk2ePJkiYCHMGQAAyOv1aufOnVq3bp3uvPNOVa1a1exIKEeUAQCAsrKytGDBAvXu3Vv169c3Ow7KGWUAACzO5XJp4sSJSkxM1NVXX212HJiAMgAAFubxePTMM8+odevW6tGjhxwOh9mRYALKAABYVHFxsZ544gkdPXpUgwcPVmBgoNmRYBLKAABYkNvt1qpVqxQREaHXXntNdjuXAyvjXx8ALGj79u3atGmThg0bprCwMLPjwGSlLgOzZ88uyxwAgHKSlZWluXPnqn///qpbt67ZcVABlLoMZGdn67333pPX6y3LPACAMlRcXKyXXnpJycnJatWqFacQQtJFlIERI0YoIyND69evl8fjKctMAIAykJubq/Hjxys+Pl7XX389KwdwXqnLQEREhG6++WZ99tln2r9/vwzDKMtcAAAfKi4u1rvvvqucnByNHDmSEQH8wkVNIGzevLk6deqkmTNnKi8vr6wyAQB8bPXq1SosLNQTTzzBygH8xkW/I7p166b4+HhNnDiR0QEA8APp6enauHGjBg8erGrVqpkdBxXQRZeBwMBADRo0SC6XSy+//LLcbndZ5AIAXCbDMHTy5EnNmzdPSUlJuvLKK7k9gAu6pLGigIAAPfXUU/r22281f/58VhgAQAVUXFys6dOnKzY2Vl27duX2AH7XJb8zgoOD9eKLL2r79u3asWOHLzMBAHxg2rRpcrlcGjVqFCMC+EOXVRNr166tvn37atmyZTp69KivMgEALtPMmTO1detW3X///WZHgR+4rDLgcDjUvn17xcXFacGCBSouLvZVLgDAJTAMQ5s3b9aePXv00EMPKTQ01OxI8AOXfQMpKChIgwcP1rFjx7RkyRLmDwCASQzD0LFjx7Ry5UrdcMMNatKkCbcHUCo+mU3icDj07LPP6v3339eXX37pi6cEAFwkt9utjz76SNHR0erUqRNFAKXm06mlzz//vN59911t3rzZl08LAPgThmFo0aJFys7O1tChQ82OAz/j0zLQqFEjjRo1SsuWLdOPP/7oy6cGAPyB1atX69tvv9WYMWMUEhJidhz4GZ+WAYfDoU6dOqlBgwZavny5CgsLffn0AIBfMQxD33zzjd544w3de++9ioyMNDsS/JDPd6AIDAzUrbfeql27dmnTpk1sWQwAZejUqVOaNm2annzyScXExJgdB36qTLajcjgceuSRRzR37lzt3LmzLF4CACyvoKBACxcuVGJiolq0aMGEQVyyMtubsk6dOrrzzjs1ZcoUZWRklNXLAIAleTweff755zp9+rR69uyp4OBgsyPBj5XpRtWtWrXSgAED9Mwzzyg7O7ssXwoALCUjI0MLFizQkCFDmCeAy2Yzyvimvsvl0qxZs5Sbm6uxY8dyUAYAXKaSkhL17NlTU6ZMUVxcnNlxUAmU+ZU5MDBQKSkpcrvdWrt2rTweT1m/JABUWrm5uXr00Uf16KOPKjY21uw4qCTKvAzYbDZFRUWpZ8+eWrt2rTIyMlhhAACXoKCgQFOmTFFISIi6dOnChEH4TLmN2bdq1UqdO3fWK6+8wvkFAHCRDMPQpk2blJOTo7Fjx3IAEXyqXG/gd+/eXa1atdJLL71Uni8LAH4vKytLy5Yt08CBAxUdHW12HFQy5VoGHA6HRowYoaKiIs2bN4/5AwBQCi6XS5MnT1bHjh3VsmVLs+OgEir3qf1BQUG66667NGvWLKWlpTF/AAD+gMfj0cyZMxUcHKwBAwbI4XCYHQmVULmXAZvNptq1a+uJJ57Ql19+qaysrPKOAAB+Y82aNdq0aZMee+wxJgyizJi26P+qq65SkyZNtGjRIg40AoALWL9+vd577z2NGzeOIoAyZVoZCAkJUUpKig4fPqz169dzuwAAfubo0aNasWKFBg0apPr161MGUKbKfAfCP1NUVKSePXvqgw8+UM2aNc2MAgAVgtvt1gcffKATJ07o3nvvVUBAgNmRUMmZvjdwSEiI3n77bT366KPMHwBgeYZhaMuWLdqwYYNSU1MpAigXppcBSWrcuLH69u2rf/3rX8rMzDQ7DgCYZt++fZo1a5buueceVa1a1ew4sIgKUQbsdrt69uypKlWq6NNPP2X/AQCWlJubq/Hjx+u2225Ts2bNzI4DC6kQZUCSrrjiCqWmpmr37t1KT09nQiEASzEMQxMnTlRycrLat29vdhxYTIUpA5IUExOjvn37atasWTp9+jSFAIAleDwezZgxQ0ePHlW3bt1YOYByV6HKgM1mU6dOndS4cWO9++67KikpMTsSAJQpwzCUnp6u9PR03X///YqKiqIMoNxVqDJwTmpqqk6dOqWPPvrI7CgAUKYKCws1f/58de3aVQkJCWbHgUVVyDIgSQ8//LC2bt2q9evXmx0FAMqEYRiaOnWqoqKilJycbHYcWFiFLQORkZHq16+fxo8fr++++475AwAqFcMw9Omnn2rfvn0aOXKkgoKCzI4EC6uwZcBms6ljx44aMmSI1q5dq6KiIrMjAYDP7N+/X//+97/1v//7vwoLCzM7DiyuwpYB6adC0KdPH+Xl5WndunXsPwCgUjh69Khee+01PfjggwoNDTU7DlCxy4D00/4Dt956qz799FPt3r3b7DgAcFnOnj2ruXPnKiYmRgkJCbLbK/yvYViAX7wLGzZsqNTUVD311FMqLi42Ow4AXBKv16sdO3YoMzNTI0eO1BVXXGF2JECSn5QBSYqPj9fIkSP1t7/9TV6v1+w4AHDR8vLy9Oqrr+quu+5SVFSU2XGA8/ymDNhsNt1www2Kjo7W7NmzGSEA4Ffy8/P1zDPPKDU1VQ0bNjQ7DvALflMGJMnpdColJUXr1q3Tt99+y3JDAH7B7XZr2rRpatiwoa6//np2GESF41dlQPrpuONbb71Vq1ev1unTp82OAwB/Ki0tTVlZWUpNTaUIoELyuzIgSZ06dVJ0dLTmzZvHckMAFdrWrVu1ePFi3XTTTXI6nWbHAS7IL8tAcHCwRowYwXbFACoswzB08uRJvf/++0pMTFSLFi0YFUCF5ZdlQPqpELz++uv6+9//rszMTLPjAMAvGIahL7/8UoGBgbrtttvkcDjMjgT8Lr8tA5LkcDj04osvatKkSTp27JjZcQDgvM2bN2vlypV64IEHGBFAhefXZcBms6l169Zq2rSpZsyYodzcXLMjAYAOHjyoqVOnasyYMewnAL/g12VA+ul2Qd++fXXy5Elt2bLF7DgALM7j8ej555/X8OHD1axZM7PjAKXi92VAksLDwzVy5EgtWrRIR44cYf8BAKYoKSnR9OnT1b59e7Vp04bbA/AblaIM2Gw2xcfHKykpSW+99ZYKCgrMjgTAYjwej9auXaudO3cqOTlZISEhZkcCSq1SlIFz+vfvr+rVq2vKlClmRwFgMadOndK8efOUkpKiBg0amB0HuCiVqgxI0t13363MzEytXLnS7CgALMLr9Wrq1Km69tprlZSUZHYc4KJVujLgdDp1++236/PPP9fu3buZPwCgTBmGofnz56uwsFBDhgxhngD8UqUrAzabTY0aNVLHjh01ffp0zi8AUKa+++47LV68WI899hjbDcNvVboyIP1UCLp37y6n06nVq1erpKTE7EgAKqGsrCy9/fbb+utf/6rg4GCz4wCXrFKWAUkKCwtTamqqtmzZoi1btnC7AIBP5eTkaN68eerRo4fi4uK4PQC/VmnLgCTFxMRoxIgRevnll9mdEIDPuN1uLVmyREePHlVycjKjAvB7lboMSFKzZs1055136tFHH5XX6zU7DgA/ZxiGTp8+rcWLF+uee+5ReHi42ZGAy1bpy4Akde7cWW3bttW0adPkdrvNjgPAj+Xn5+vvf/+7HnjgAdWtW9fsOIBPWKIMBAYGauDAgcrMzNSGDRsYIQBwSYqKivTmm2+qQ4cOSkxMZJ4AKg1LlAFJqlWrlpKSkrRgwQIdOXLE7DgA/NCSJUtUVFSk4cOHmx0F8CnLlAFJuvrqq3XVVVdp/vz5crlcZscB4Ee2bNmiXbt2afjw4QoICDA7DuBTlioDTqdTt956q7Kzs7Vy5UqWGwL4U4ZhKCsrS59++qk6d+6s2NhYbg+g0rFUGZCkkJAQPfvss3rttde0b98+s+MAqODcbrfee+89FRYWqnv37rLbLfdrExZgyXe1zWbTK6+8oldffVU//vij2XEAVGDffPONDh06pHHjxjEigErLsmWgcePGuu666/Thhx8qJyfH7EgAKqDvv/9ec+bM0dixY1W1alWz4wBlxpJlQJICAgKUnJyskpISffbZZyw3BPALZ8+e1YQJEzR69Gg1atTI7DhAmbJsGZB+Or+gZ8+emjlzpr7//nsmFAKQJHk8Hk2ePFk9e/ZUy5YtzY4DlDlLlwFJio+P14MPPshxxwAkSSUlJUpLS1NAQIC6d+8uh8NhdiSgzFm+DNhsNnXp0kWtWrXS66+/znHHgIUZhqH09HStWbNGPXv2VI0aNZg0CEuwfBk4Z9iwYZKkOXPmmJwEgFncbrfeeustdejQQQkJCWbHAcoNZeBn/vu//1t79+7Vl19+yfwBwGIMw9CkSZMUHx+vPn36mB0HKFeUgf+w2WyqVauW+vXrp1WrVunIkSMUAsAivF6vVq5cqcOHD+v2229XUFCQ2ZGAckUZ+Bmbzaarr75aderU0QcffKDCwkKzIwEoB7t379bChQv15JNPUgRgSZSBC0hJSdGhQ4e0atUqRgeASu748eP66KOPNHz4cFWvXt3sOIApKAMXEB0drXHjxiktLU3btm0zOw6AMlJYWKgVK1YoJiZGbdu25dwBWBbv/N9Rr149Pfzww3rqqad09uxZs+MA8DHDMLR69WqtW7dON954o0JDQ82OBJjGZjAO/rsMw9CaNWu0bNkyPfvsswoODjY7EgAfOXXqlIYMGaKZM2eqVq1aZscBTMXIwB+w2Wzq0KGDGjdurIULF6q4uNjsSAB8IDs7W88884z+7//+jyIAiDLwp8LCwtSnTx/t2bNHW7Zs4UAjwM/l5eXpvffeU2Jiojp06GB2HKBCoAyUQkxMjLp3767Jkydz3DHg55YsWaLAwED169ePCYPAf/CTUEodOnRQ//799dJLLzE6APghwzC0fft2paenq1+/fnI6nWZHAioMykApBQYGauDAgYqIiNDUqVM50AjwI4Zh6OjRo5o3b56Sk5MVFxfHAUTAz1AGLoLdbtcDDzyg9PR0rV692uw4AErJ6/XqueeeU5UqVdSlSxeKAPArlIGLFBgYqDFjxmjNmjXatWuX2XEAlMKcOXMUHh6uxx57zOwoQIVEGbhINptNMTExuu6667R8+XJlZ2ebHQnAH1i1apXS09M1btw4s6MAFRZl4BIEBASoc+fOstvtWrBggVwul9mRAPyKYRjas2ePPvvsM40YMULh4eFmRwIqLMrAJQoKCtKDDz6oNWvWaMOGDRxoBFQwubm5WrBggbp166bGjRszTwD4A5SBy2Cz2fTqq69q2rRpzB8AKhC3262lS5cqNDRU3bp1owgAf4IycJlq1qyp+++/X7NmzdL+/fvNjgNYnmEYmjVrltasWaMhQ4ZwpghQCpQBH2jZsqWSkpI0Z84cnTlzxuw4gKXt2bNHS5cu1SOPPMK5A0ApUQZ8wOFwKCkpSdWqVdPixYvZoRAwSX5+vsaNG6eJEyeqSZMmZscB/AZlwEcCAwN1yy23aOfOnVq/fj2FAChneXl5mjBhgh544AFFR0ebHQfwK5QBH7HZbKpZs6ZSUlL01ltvaefOnWZHAiyjqKhIy5cvV506ddSxY0c5HA6zIwF+hTLgY4mJiRo9erQmTJig3Nxcs+MAlZ7X69XWrVuVnp6u3r17q2rVqmZHAvyOzWCBvM8ZhqGVK1dqxYoVevnll1nWBJShwsJC3XLLLXrjjTcUFxdndhzALzEyUEaSkpLUokULTZs2jRMOgTJSVFSkQYMGaezYsYqNjTU7DuC3KANlwGazKSQkRH379tWJEyf01VdfyePxmB0LqFTOnDmjiRMnavTo0br++usZgQMuA2WgDNWuXVu9evXSqlWrdPDgQbYsBnykqKhIixcvVnh4uFJSUigCwGWiDJSxli1bqlOnTnr66acZHQB8wDAMbdiwQRkZGbr55psVEhJidiTA71EGykH37t3Vp08fPfHEE4wOAJfBMAxlZmZq4cKFuuWWW1SjRg2zIwGVAmWgHAQGBurmm29W/fr19e6778rtdpsdCfBLp0+f1gsvvKCbbrpJjRs3NjsOUGlQBspJQECAhg0bplOnTumzzz6jEAAX6cyZM3rkkUcUFRWlLl26ME8A8CH2GShnBw4c0IwZMzRo0CAlJCTwCw0oBZfLpXfeeUc2m01333237HY+xwC+xE9UOWvQoIF69eqlGTNmsEMhUEqLFy+Wy+XSyJEjKQJAGeCnygTt2rVTQkKC7rvvPlYYAH/AMAxt3rxZO3fu1M0336zQ0FCzIwGVEmXABA6HQyNGjFDTpk319NNPq6ioyOxIQIVjGIaOHDmijz76SCkpKYqJieG2GlBGKAMmsdvtevzxx1W1alV9/PHHKi4uNjsSUKEcP35cb7zxhjp27Ki2bdtSBIAyRBkwUUBAgO68804dOHBA69atYw8C4D8KCwv14osv6sorr1Tfvn3NjgNUepQBk4WHh2vw4MFau3atfvjhB7PjABXC66+/rlatWmnUqFFmRwEsgTJQAdSvX1833nijJk+erNOnT5sdBzCN1+vVhx9+qJCQEA0aNIiVA0A54SetArDb7br66qt1zTXX6JFHHtHJkyfNjgSUO6/Xq02bNik9PV0DBw5U1apVmScAlBPKQAVhs9k0dOhQNWnSRBMnTmQPAliKYRjau3evli9frj59+rByAChnlIEK5qGHHlKDBg00b948lhzCMg4dOqTx48frhhtuUOvWrc2OA1gOZaCCCQwM1JAhQ5Sfn6/ly5ezwgCVXkFBgR577DGNHDlS1157rdlxAEuiDFRAYWFhGjFihL744gtt27aNQoBKy+1269lnn9Xtt9+ujh07mh0HsCzKQAUVERGh++67T5MmTVJ6errZcQCfKyoq0uzZs9W0aVNOIQRMRhmooGw2m+rXr6/hw4fr+eef1+bNm82OBPhMSUmJPvnkE+Xm5iolJUUhISGUAcBEAWYHwB/r3Lmz8vLy9MEHH6h69epq2LCh2ZGAy7Z69Wrt2LFDo0aNUo0aNcyOA1iezeCGdIXn8Xi0bt06ffPNN0pNTVVkZCSfouCXDMPQsmXLNGXKFE2aNEm1atUyOxIAcZvALzgcDnXt2lVxcXFasGCB8vPzmVQIv+P1erVlyxbNnj1bb7zxhmrWrGl2JAD/QRnwEw6H4/ySw/nz58vr9ZodCSg1wzB04MABffTRR/rrX/+q6OhoRreACoQy4Gcefvhhff/995oxY4bZUYBSO3HihGbOnKlevXqpWbNmZscB8CuUAT/05JNP6vDhw3r77bfNjgL8KbfbrX/84x+69tprlZiYaHYcABdAGfBDVatW1ZgxY1RUVKQPP/yQ+QOosAzD0H333ac+ffooOTmZWwNABUUZ8EM2m00REREaMmSI9uzZo88//1wej8fsWMAvFBQUaPTo0WrcuLG6d+8uh8NhdiQAv4OlhX7uwIED5+/FtmvXjk9eqBByc3M1b948Va9eXQMGDFBQUJDZkQD8AUYG/FyDBg10yy23aNGiRfriiy/MjgOooKBAixYtUmhoqHr27EkRAPwAZaASaNasmYYOHarJkydr8eLFZseBhXm9Xs2ePVtut1t9+/bVFVdcYXYkAKVAGagkmjdvrscff1ybNm3ipEOYwuv1atq0acrLy9OQIUNUvXp1syMBKCXOJqgkbDabEhISZBiGli5dquDgYDVu3Fh2O30PZa+wsFBvvfWWdu7cqUmTJikwMNDsSAAuAleKSsRms6lly5bq1q2bFi1apL179zJCgDJXUFCgZcuWqbCwUP/85z8pAoAfYjVBJfXVV19p1apVuuGGG3TNNdeYHQeVlMvl0ooVK3T8+HH179+fg4cAP8XIQCV17bXXql+/fho/frzS0tLMjoNKyDAMffzxxzp48KAGDBhAEQD8GCMDlZhhGNq2bZs++OADDR8+XE2bNmUfAvhESUmJ3n//fR06dEgPPvigwsLCzI4E4DJQBio5wzC0ZcsWrVy5UgMHDlSTJk2YVIjLkp+fr9dff105OTl65pln2EcAqAS4KlRyNptNbdu2VVJSkj7++GNt377d7EjwY3l5efr444/l9Xr18MMPUwSASoKRAQvZsmWLli1bprZt26p3795mx4GfcblcmjVrliSpb9++qlmzpsmJAPgK+wxYSOvWreV0OvXPf/5ThmGoT58+ZkeCH3n55ZcVHR2tAQMGsKEQUMkwMmAxhmFo9+7deueddzRgwAB17tyZOQT4Q0VFRXr22WeVkJCgQYMGcWsAqIQoAxZkGIYOHTqkd999Vz169FC3bt0oBLig06dP67nnnlNCQoKGDx/OhkJAJUUZsLDMzEy9/fbbatGihW6++Waz46ACMQxDx44d08yZMxUeHq5bbrlF1apVMzsWgDJCGbC4nJwcvffeeyoqKtK9997LenFIkg4ePKhXXnlFvXr1UlJSErcGgEqOMmBxhmGooKBAc+fO1eHDh/XAAw+oWrVqbE5kUYZhaMeOHRo/frwee+wxNWvWjPcCYAGUAcgwDHk8Hs2bN08HDx7U7bffrqioKC4CFlNSUqL58+dr6dKlevHFF1W7dm3eA4BFUAbwCwsWLND27ds1bNgwNW7c2Ow4KCfFxcVKS0vTkiVLdM8996hly5ZmRwJQjigD+I1169Zp9erV6tKli5KTk82OgzLmcrk0depUFRYWauDAgYqLizM7EoByRhnAb5y7bzx9+nS1bdtWN910k0JCQsyOhTJw/PhxvfDCC2rXrp369OmjiIgIsyMBMAFlABfk9Xp15MgRTZ06VZGRkRo9ejSFoBIxDEPr16/Xu+++qzvvvFMdOnRgxQBgYZQB/K5zEwsnT56srKwsjRs3TuHh4WbHwmUwDENer1ebNm3Syy+/rDvvvFM9evRgoiBgcZQBlMqiRYu0bt063XbbbUpISFBwcLDZkXAJcnNzlZaWpq+++kqpqamKj483OxKACoAygFI592lyzpw5uvrqqzVgwABVqVLF7Fi4CHv37tWiRYvkcrl0xx13KDIy0uxIACoIygBKzev16uDBg1q8eLHy8vI0btw45hH4ibS0NC1fvlw9evRQr169OIsCwC/wGwGlZrfb1aBBA40ePVoJCQnq37+/9u3bJ6/Xa3Y0/A6Xy6VZs2ZpwoQJSklJ0Q033EARAPAbjAzgkpxbbfCXv/xF/fr104033qiwsDAmolUQXq9X2dnZeuutt1RcXKwnnnhCoaGh/PsAuCDKAC5LZmamXnrpJUVFRemmm25SkyZN+ORpslOnTmnjxo365JNP1KlTJw0aNMjsSAAqOMoALltWVpZWrlypffv2cRyyiQzDUFZWliZNmqT8/HyNGjVK8fHxlDMAf4oyAJ/54YcftHTpUqWnp+svf/kLZxuUs08++URTpkxR7969dcMNN6h27dpmRwLgJygD8JlzxyF/9dVXmjhxosaOHavu3bsrICCAe9VlxOv16syZM5o4caJycnL0+OOPKzw8nN0EAVwUygB86tzbadOmTXr++efVpk0bjRgxQnXr1uUC5UOGYejs2bP67LPP9M4772jw4MG69dZb+X8M4JJQBlCm5s+fr/Xr16tDhw7q2rWrYmJizI7k9zwejzZv3qx169Zp3759GjZsmDp16mR2LAB+jDKAMmUYhg4dOqQlS5Zo79696tSpk/r168d2xpfowIEDmjt3rlwul1q3bq3OnTtz0iCAy0YZQLkoKCjQjh07tGrVKqWnp2vs2LFq166d2bH8RmFhoaZOnaqNGzeqf//+uuaaa1SnTh3mYgDwCcoAyo1hGCoqKtLu3bs1YcIE1a1bV3fccYdiY2OZZHgBXq9XLpdLGzZs0IQJE1S/fn3dddddatKkiQICAsyOB6ASoQyg3J0rBQsWLNCMGTPUt29f9ezZU7GxsQoNDTU7num8Xq9OnDihXbt2aenSpcrPz9f999+vZs2aSRKlCYDPUQZgqu3bt+vTTz/V8ePHFRcXpzZt2qhly5aWPRExMzNTGzZs0Jdffqn8/HwNGjRInTt3Zo4FgDJFGUCFcOjQIX399dfatWuXTp06pZ49e6pXr15yOBxmRysXmZmZWrhwoTIyMlS7dm01adJEbdu2ZeMgAOWCMoAKw+PxKDs7W2lpadq0aZN27NihUaNGqW/fvqpWrZqkyjFE/vMfuf379+u1117TgQMHlJKSosTERMXGxqpq1aomJgRgNZQBVDgej0dut1snTpzQ22+/rY0bN6pp06a67777VLt2bYWEhPjlBLpzcyWKioq0detWvffeezp8+LB69eqlYcOGqUaNGkykBGAKygAqvMzMTL3++uv65ptv1KpVK7Vv317NmjVTeHi46tatW6GLwbktmo8dO6Zjx47p008/1caNGxUbG6uhQ4eqU6dOFTo/AGugDMBvuN1ubdy4UV9//bWysrKUlZWl5s2bq3nz5mrcuLHi4uLkdDrNjilJOnnypLZv364DBw4oOztbeXl5ys/PV7169dStWze1adPG7IgAcB5lAH7n3NK7LVu2nC8Fx44dU15enpxOp5KSktSqVSvFxMSUy6duwzDkdru1detWpaena+vWrSooKFB+fr4aN26stm3bqlGjRmrQoIGCg4O5DQCgwqEMwK+dO7DnzJkzOnHihObOnav8/Hzt379fubm5io+P1xVXXKEePXqoadOmql279i+W6ZX2wvzzHxOXy6Vdu3Zpz5492rVrl3bu3Kk9e/YoNjb2/Kf+evXqyel0qnr16kwGBFDhUQZQaRiGIY/HI8Mw5PV6lZubq++++06zZ8+Wy+XS0aNHdfLkSYWHh6u4uFgJCQmqWbOmqlSpoipVquj48eOKjo5WUFCQ3G633G63du7cqaCgIBUVFSkrK0vHjx9Xbm6u6tWrp/bt2yshIUEJCQlq0qSJgoKCZLfbZbfbZbPZGAEA4DcoA7AUl8ul48eP6+uvv1ZAQIA8Ho/y8/OVl5en3bt3KyIiQtWqVVNgYKACAgJ07NgxNWjQQA0bNlRUVJSioqJUvXr18xd8AKgMKAMAAFic3ewAAADAXJQBAAAsjjIAAIDFUQYAALA4ygAAABZHGQAAwOIoAwAAWBxlAAAAi6MMAABgcZQBAAAsjjIAAIDFUQYAALA4ygAAABZHGQAAwOIoAwAAWBxlAAAAi6MMAABgcZQBAAAsjjIAAIDFUQYAALA4ygAAABZHGQAAwOIoAwAAWBxlAAAAi6MMAABgcZQBAAAsjjIAAIDFUQYAALA4ygAAABZHGQAAwOIoAwAAWBxlAAAAi6MMAABgcZQBAAAsjjIAAIDFUQYAALC4/weJ1hqyIXcPWwAAAABJRU5ErkJggg==",
310
+ "text/plain": [
311
+ "<Figure size 640x480 with 1 Axes>"
312
+ ]
313
+ },
314
+ "metadata": {},
315
+ "output_type": "display_data"
316
+ }
317
+ ],
318
+ "source": [
319
+ "from IPython.display import display, clear_output\n",
320
+ "import time\n",
321
+ "\n",
322
+ "# Initialize environment\n",
323
+ "state, _ = env.reset()\n",
324
+ "state = discretize_state(state)\n",
325
+ "done = False\n",
326
+ "total_reward = 0\n",
327
+ "\n",
328
+ "# Test the policy\n",
329
+ "while not done:\n",
330
+ " action = np.argmax(Q_table[state])\n",
331
+ " next_state, reward, done, truncated, _ = env.step(action)\n",
332
+ " state = discretize_state(next_state)\n",
333
+ " total_reward += reward\n",
334
+ "\n",
335
+ " # Render frame\n",
336
+ " frame = env.render()\n",
337
+ " plt.imshow(frame)\n",
338
+ " plt.axis(\"off\")\n",
339
+ " display(plt.gcf())\n",
340
+ " clear_output(wait=True)\n",
341
+ " time.sleep(0.3) \n",
342
+ "\n",
343
+ "print(\"Total reward:\", total_reward)\n",
344
+ "env.close()\n"
345
+ ]
346
+ }
347
+ ],
348
+ "metadata": {
349
+ "kernelspec": {
350
+ "display_name": "Python 3",
351
+ "language": "python",
352
+ "name": "python3"
353
+ },
354
+ "language_info": {
355
+ "codemirror_mode": {
356
+ "name": "ipython",
357
+ "version": 3
358
+ },
359
+ "file_extension": ".py",
360
+ "mimetype": "text/x-python",
361
+ "name": "python",
362
+ "nbconvert_exporter": "python",
363
+ "pygments_lexer": "ipython3",
364
+ "version": "3.11.9"
365
+ }
366
+ },
367
+ "nbformat": 4,
368
+ "nbformat_minor": 2
369
+ }
q_learning_model.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:44a37cd6c4ac1ae53e49607479efdc35c6fdd0318009c4e9d2822c29ffcd10f6
3
+ size 9848