Image Classification
timm
English
vision
Lupin1998 commited on
Commit
f1ea797
·
1 Parent(s): 5e40b1d

fix moganet_tiny_224_in1k

Browse files
Files changed (1) hide show
  1. README.md +3 -3
README.md CHANGED
@@ -17,7 +17,7 @@ widget:
17
  example_title: Tiger
18
  ---
19
 
20
- # Model card for moganet_xtiny_256_in1k
21
 
22
  MogaNet a new family of efficient ConvNets with preferable parameter-performance trade-offs, which is trained on ImageNet-1k (1 million images, 1,000 classes). It was first introduced in the paper [MogaNet](https://arxiv.org/abs/2211.03295) and released in [Westlake/MogaNet](https://github.com/Westlake-AI/MogaNet) and [Westlake/openmixup](https://github.com/Westlake-AI/openmixup).
23
 
@@ -45,7 +45,7 @@ import models
45
  img = Image.open(
46
  urlopen('https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'))
47
 
48
- model = timm.create_model('moganet_xtiny_1k_sz256', pretrained=True)
49
  model = model.eval()
50
 
51
  # get model specific transforms (normalization, resize)
@@ -67,7 +67,7 @@ img = Image.open(
67
  urlopen('https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'))
68
 
69
  model = timm.create_model(
70
- 'moganet_xtiny_1k_sz256',
71
  pretrained=True,
72
  fork_feat=True,
73
  )
 
17
  example_title: Tiger
18
  ---
19
 
20
+ # Model card for moganet_tiny_224_in1k
21
 
22
  MogaNet a new family of efficient ConvNets with preferable parameter-performance trade-offs, which is trained on ImageNet-1k (1 million images, 1,000 classes). It was first introduced in the paper [MogaNet](https://arxiv.org/abs/2211.03295) and released in [Westlake/MogaNet](https://github.com/Westlake-AI/MogaNet) and [Westlake/openmixup](https://github.com/Westlake-AI/openmixup).
23
 
 
45
  img = Image.open(
46
  urlopen('https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'))
47
 
48
+ model = timm.create_model('moganet_tiny_1k', pretrained=True)
49
  model = model.eval()
50
 
51
  # get model specific transforms (normalization, resize)
 
67
  urlopen('https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'))
68
 
69
  model = timm.create_model(
70
+ 'moganet_tiny_1k',
71
  pretrained=True,
72
  fork_feat=True,
73
  )