File size: 9,791 Bytes
ab84b16 56e505d ab84b16 057d00e ab84b16 0964040 ef2cb41 0964040 062bc45 1810a8c 062bc45 37e8e60 1810a8c 4ddfe5a 1810a8c 4ddfe5a 1810a8c 4ddfe5a 1810a8c 4ddfe5a 1810a8c 4ddfe5a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 |
---
tags:
- gptq
- 4bit
- int4
- gptqmodel
- modelcloud
- llama-3.1
- 8b
- instruct
license: llama3.1
---
This model has been quantized using [GPTQModel](https://github.com/ModelCloud/GPTQModel).
- **bits**: 4
- **group_size**: 128
- **desc_act**: true
- **static_groups**: false
- **sym**: true
- **lm_head**: false
- **damp_percent**: 0.005
- **true_sequential**: true
- **model_name_or_path**: ""
- **model_file_base_name**: "model"
- **quant_method**: "gptq"
- **checkpoint_format**: "gptq"
- **meta**:
- **quantizer**: "gptqmodel:0.9.9-dev0"
## Example:
```python
from transformers import AutoTokenizer
from gptqmodel import GPTQModel
model_name = "ModelCloud/Meta-Llama-3.1-8B-Instruct-gptq-4bit"
prompt = [{"role": "user", "content": "I am in Shanghai, preparing to visit the natural history museum. Can you tell me the best way to"}]
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = GPTQModel.from_quantized(model_name)
input_tensor = tokenizer.apply_chat_template(prompt, add_generation_prompt=True, return_tensors="pt")
outputs = model.generate(input_ids=input_tensor.to(model.device), max_new_tokens=100)
result = tokenizer.decode(outputs[0][input_tensor.shape[1]:], skip_special_tokens=True)
print(result)
```
## lm-eval benchmark
```
| Tasks |Version|Filter|n-shot| Metric | |Value | |Stderr|
|---------------------------------------|------:|------|-----:|----------|---|-----:|---|-----:|
|arc_challenge | 1|none | 0|acc |↑ |0.5171|± |0.0146|
| | |none | 0|acc_norm |↑ |0.5290|± |0.0146|
|arc_easy | 1|none | 0|acc |↑ |0.8068|± |0.0081|
| | |none | 0|acc_norm |↑ |0.7837|± |0.0084|
|boolq | 2|none | 0|acc |↑ |0.8232|± |0.0067|
|hellaswag | 1|none | 0|acc |↑ |0.5787|± |0.0049|
| | |none | 0|acc_norm |↑ |0.7765|± |0.0042|
|lambada_openai | 1|none | 0|acc |↑ |0.7091|± |0.0063|
| | |none | 0|perplexity|↓ |3.6297|± |0.0805|
|mmlu | 1|none | |acc |↑ |0.6421|± |0.0039|
| - humanities | 1|none | |acc |↑ |0.5932|± |0.0069|
| - formal_logic | 0|none | 0|acc |↑ |0.4206|± |0.0442|
| - high_school_european_history | 0|none | 0|acc |↑ |0.7030|± |0.0357|
| - high_school_us_history | 0|none | 0|acc |↑ |0.8039|± |0.0279|
| - high_school_world_history | 0|none | 0|acc |↑ |0.8228|± |0.0249|
| - international_law | 0|none | 0|acc |↑ |0.7686|± |0.0385|
| - jurisprudence | 0|none | 0|acc |↑ |0.7685|± |0.0408|
| - logical_fallacies | 0|none | 0|acc |↑ |0.7914|± |0.0319|
| - moral_disputes | 0|none | 0|acc |↑ |0.7110|± |0.0244|
| - moral_scenarios | 0|none | 0|acc |↑ |0.4536|± |0.0167|
| - philosophy | 0|none | 0|acc |↑ |0.6913|± |0.0262|
| - prehistory | 0|none | 0|acc |↑ |0.7037|± |0.0254|
| - professional_law | 0|none | 0|acc |↑ |0.4739|± |0.0128|
| - world_religions | 0|none | 0|acc |↑ |0.7953|± |0.0309|
| - other | 1|none | |acc |↑ |0.7036|± |0.0079|
| - business_ethics | 0|none | 0|acc |↑ |0.6400|± |0.0482|
| - clinical_knowledge | 0|none | 0|acc |↑ |0.7094|± |0.0279|
| - college_medicine | 0|none | 0|acc |↑ |0.6358|± |0.0367|
| - global_facts | 0|none | 0|acc |↑ |0.3400|± |0.0476|
| - human_aging | 0|none | 0|acc |↑ |0.6457|± |0.0321|
| - management | 0|none | 0|acc |↑ |0.8544|± |0.0349|
| - marketing | 0|none | 0|acc |↑ |0.8761|± |0.0216|
| - medical_genetics | 0|none | 0|acc |↑ |0.7300|± |0.0446|
| - miscellaneous | 0|none | 0|acc |↑ |0.8148|± |0.0139|
| - nutrition | 0|none | 0|acc |↑ |0.7092|± |0.0260|
| - professional_accounting | 0|none | 0|acc |↑ |0.5071|± |0.0298|
| - professional_medicine | 0|none | 0|acc |↑ |0.7316|± |0.0269|
| - virology | 0|none | 0|acc |↑ |0.5000|± |0.0389|
| - social sciences | 1|none | |acc |↑ |0.7390|± |0.0077|
| - econometrics | 0|none | 0|acc |↑ |0.4561|± |0.0469|
| - high_school_geography | 0|none | 0|acc |↑ |0.8333|± |0.0266|
| - high_school_government_and_politics| 0|none | 0|acc |↑ |0.8808|± |0.0234|
| - high_school_macroeconomics | 0|none | 0|acc |↑ |0.6231|± |0.0246|
| - high_school_microeconomics | 0|none | 0|acc |↑ |0.7437|± |0.0284|
| - high_school_psychology | 0|none | 0|acc |↑ |0.8404|± |0.0157|
| - human_sexuality | 0|none | 0|acc |↑ |0.7481|± |0.0381|
| - professional_psychology | 0|none | 0|acc |↑ |0.6814|± |0.0189|
| - public_relations | 0|none | 0|acc |↑ |0.6455|± |0.0458|
| - security_studies | 0|none | 0|acc |↑ |0.7143|± |0.0289|
| - sociology | 0|none | 0|acc |↑ |0.8259|± |0.0268|
| - us_foreign_policy | 0|none | 0|acc |↑ |0.8200|± |0.0386|
| - stem | 1|none | |acc |↑ |0.5601|± |0.0085|
| - abstract_algebra | 0|none | 0|acc |↑ |0.3500|± |0.0479|
| - anatomy | 0|none | 0|acc |↑ |0.6370|± |0.0415|
| - astronomy | 0|none | 0|acc |↑ |0.7566|± |0.0349|
| - college_biology | 0|none | 0|acc |↑ |0.7639|± |0.0355|
| - college_chemistry | 0|none | 0|acc |↑ |0.4800|± |0.0502|
| - college_computer_science | 0|none | 0|acc |↑ |0.5000|± |0.0503|
| - college_mathematics | 0|none | 0|acc |↑ |0.3200|± |0.0469|
| - college_physics | 0|none | 0|acc |↑ |0.4020|± |0.0488|
| - computer_security | 0|none | 0|acc |↑ |0.7600|± |0.0429|
| - conceptual_physics | 0|none | 0|acc |↑ |0.5574|± |0.0325|
| - electrical_engineering | 0|none | 0|acc |↑ |0.6345|± |0.0401|
| - elementary_mathematics | 0|none | 0|acc |↑ |0.4921|± |0.0257|
| - high_school_biology | 0|none | 0|acc |↑ |0.7710|± |0.0239|
| - high_school_chemistry | 0|none | 0|acc |↑ |0.5665|± |0.0349|
| - high_school_computer_science | 0|none | 0|acc |↑ |0.7000|± |0.0461|
| - high_school_mathematics | 0|none | 0|acc |↑ |0.4074|± |0.0300|
| - high_school_physics | 0|none | 0|acc |↑ |0.4172|± |0.0403|
| - high_school_statistics | 0|none | 0|acc |↑ |0.5278|± |0.0340|
| - machine_learning | 0|none | 0|acc |↑ |0.4732|± |0.0474|
|openbookqa | 1|none | 0|acc |↑ |0.3360|± |0.0211|
| | |none | 0|acc_norm |↑ |0.4220|± |0.0221|
|piqa | 1|none | 0|acc |↑ |0.7943|± |0.0094|
| | |none | 0|acc_norm |↑ |0.7965|± |0.0094|
|rte | 1|none | 0|acc |↑ |0.6968|± |0.0277|
|truthfulqa_mc1 | 2|none | 0|acc |↑ |0.3439|± |0.0166|
|winogrande | 1|none | 0|acc |↑ |0.7364|± |0.0124|
| Groups |Version|Filter|n-shot|Metric| |Value | |Stderr|
|------------------|------:|------|------|------|---|-----:|---|-----:|
|mmlu | 1|none | |acc |↑ |0.6421|± |0.0039|
| - humanities | 1|none | |acc |↑ |0.5932|± |0.0069|
| - other | 1|none | |acc |↑ |0.7036|± |0.0079|
| - social sciences| 1|none | |acc |↑ |0.7390|± |0.0077|
| - stem | 1|none | |acc |↑ |0.5601|± |0.0085|
```
|