lrl-modelcloud commited on
Commit
915529d
·
verified ·
1 Parent(s): e77f045

Upload folder using huggingface_hub (#1)

Browse files

- 9951a44c623482352d5c9cf82c679592185a87fb2ba3d69a6f8ab787be8fb877 (d1d0dc3bfa5d2eb81cef5a15d6bc1cb053a8deec)
- 50034c500c384ee40e8fc4152cd929ebe3e6860af23c130803fe4b0ac39d94f3 (ec04e7977cce90eff826316140d77aabdea9ef19)

config.json ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/model/EXAONE-3.0-7.8B-Instruct/",
3
+ "activation_function": "silu",
4
+ "architectures": [
5
+ "ExaoneForCausalLM"
6
+ ],
7
+ "attention_dropout": 0.0,
8
+ "auto_map": {
9
+ "AutoConfig": "configuration_exaone.ExaoneConfig",
10
+ "AutoModelForCausalLM": "modeling_exaone.ExaoneForCausalLM",
11
+ "AutoModelForSequenceClassification": "modeling_exaone.ExaoneForSequenceClassification"
12
+ },
13
+ "bos_token_id": 1,
14
+ "embed_dropout": 0.0,
15
+ "eos_token_id": 361,
16
+ "hidden_size": 4096,
17
+ "initializer_range": 0.02,
18
+ "intermediate_size": 14336,
19
+ "layer_norm_epsilon": 1e-05,
20
+ "max_position_embeddings": 4096,
21
+ "model_type": "exaone",
22
+ "num_attention_heads": 32,
23
+ "num_key_value_heads": 8,
24
+ "num_layers": 32,
25
+ "pad_token_id": 0,
26
+ "quantization_config": {
27
+ "bits": 4,
28
+ "checkpoint_format": "gptq",
29
+ "damp_auto_increment": 0.0015,
30
+ "damp_percent": 0.0025,
31
+ "desc_act": true,
32
+ "dynamic": null,
33
+ "group_size": 32,
34
+ "lm_head": false,
35
+ "meta": {
36
+ "quantizer": "gptqmodel:0.9.10-dev0"
37
+ },
38
+ "model_file_base_name": null,
39
+ "model_name_or_path": null,
40
+ "quant_method": "gptq",
41
+ "static_groups": false,
42
+ "sym": false,
43
+ "true_sequential": true
44
+ },
45
+ "rope_scaling": null,
46
+ "rope_theta": 500000.0,
47
+ "tie_word_embeddings": false,
48
+ "torch_dtype": "bfloat16",
49
+ "transformers_version": "4.43.4",
50
+ "use_cache": true,
51
+ "vocab_size": 102400
52
+ }
configuration_exaone.py ADDED
@@ -0,0 +1,186 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2021 The LG AI Research EXAONE Lab. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """ EXAONE model configuration """
16
+ from transformers.configuration_utils import PretrainedConfig
17
+ from transformers.utils import logging
18
+
19
+
20
+ logger = logging.get_logger(__name__)
21
+
22
+ EXAONE_PRETRAINED_CONFIG_ARCHIVE_MAP = {
23
+ }
24
+
25
+
26
+ class ExaoneConfig(PretrainedConfig):
27
+ r"""
28
+ This is the configuration class to store the configuration of a :class:`~transformers.ExaoneModel`. It is used to
29
+ instantiate a EXAONE model according to the specified arguments, defining the model architecture. Instantiating a
30
+ configuration with the defaults will yield a similar configuration to that of the Exaone
31
+
32
+ Configuration objects inherit from :class:`~transformers.PretrainedConfig` and can be used to control the model
33
+ outputs. Read the documentation from :class:`~transformers.PretrainedConfig` for more information.
34
+
35
+
36
+ Args:
37
+ vocab_size (:obj:`int`, `optional`, defaults to 102400):
38
+ Vocabulary size of the EXAONE model. Defines the number of different tokens that can be represented by the
39
+ :obj:`inputs_ids` passed when calling :class:`~transformers.ExaoneModel`. Vocabulary size of the model.
40
+ Defines the different tokens that can be represented by the `inputs_ids` passed to the forward method of
41
+ :class:`~transformers.EXAONEModel`.
42
+ max_position_embeddings (:obj:`int`, `optional`, defaults to 2048):
43
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
44
+ just in case (e.g., 512 or 1024 or 2048).
45
+ hidden_size (:obj:`int`, `optional`, defaults to 2048):
46
+ Dimensionality of the encoder layers and the pooler layer.
47
+ num_layers (:obj:`int`, `optional`, defaults to 32):
48
+ Number of hidden layers in the Transformer encoder.
49
+ num_attention_heads (:obj:`int`, `optional`, defaults to 32):
50
+ Number of attention heads for each attention layer in the Transformer decoder.
51
+ num_key_value_heads (:obj:`int`, `optional`):
52
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
53
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
54
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
55
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
56
+ by meanpooling all the original heads within that group. For more details checkout [this
57
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
58
+ `num_attention_heads`.
59
+ intermediate_size (:obj:`int`, `optional`, defaults to `hidden_size * 4`):
60
+ Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
61
+ activation_function (:obj:`str` or :obj:`function`, `optional`, defaults to :obj:`"silu"`):
62
+ The non-linear activation function (function or string) in the decoder.
63
+ rope_theta (:obj:`float`, `optional`, defaults to 10000.0):
64
+ The base period of the RoPE embeddings.
65
+ rope_scaling (:obj:`Dict`, `optional`):
66
+ Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
67
+ and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
68
+ accordingly.
69
+ Expected contents:
70
+ `rope_type` (:obj:`str`):
71
+ The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
72
+ 'llama3'], with 'default' being the original RoPE implementation.
73
+ `factor` (:obj:`float`, `optional`):
74
+ Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
75
+ most scaling types, a `factor` of x will enable the model to handle sequences of length x *
76
+ original maximum pre-trained length.
77
+ `original_max_position_embeddings` (:obj:`int`, `optional`):
78
+ Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
79
+ pretraining.
80
+ `attention_factor` (:obj:`float`, `optional`):
81
+ Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
82
+ computation. If unspecified, it defaults to value recommended by the implementation, using the
83
+ `factor` field to infer the suggested value.
84
+ `beta_fast` (:obj:`float`, `optional`):
85
+ Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
86
+ ramp function. If unspecified, it defaults to 32.
87
+ `beta_slow` (:obj:`float`, `optional`):
88
+ Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
89
+ ramp function. If unspecified, it defaults to 1.
90
+ `short_factor` (:obj:`List[float]`, `optional`):
91
+ Only used with 'longrope'. The scaling factor to be applied to short contexts (<
92
+ `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
93
+ size divided by the number of attention heads divided by 2
94
+ `long_factor` (:obj:`List[float]`, `optional`):
95
+ Only used with 'longrope'. The scaling factor to be applied to long contexts (<
96
+ `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
97
+ size divided by the number of attention heads divided by 2
98
+ `low_freq_factor` (:obj:`float`, `optional`):
99
+ Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
100
+ `high_freq_factor` (:obj:`float`, `optional`):
101
+ Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
102
+ embed_dropout (:obj:`float`, `optional`, defaults to 0.0):
103
+ The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.
104
+ attention_dropout (:obj:`float`, `optional`, defaults to 0.0):
105
+ The dropout ratio for the attention probabilities.
106
+ layer_norm_epsilon (:obj:`float`, `optional`, defaults to 1e-5):
107
+ The epsilon used by the layer normalization layers.
108
+ initializer_range (:obj:`float`, `optional`, defaults to 0.02):
109
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
110
+ use_cache (:obj:`bool`, `optional`, defaults to :obj:`True`):
111
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
112
+ relevant if ``config.is_decoder=True``.
113
+ bos_token_id (:obj:`int`, `optional`, defaults to 0):
114
+ Beginning of stream token id.
115
+ eos_token_id (:obj:`int`, `optional`, defaults to 2):
116
+ End of stream token id.
117
+ tie_word_embeddings (:obj:`bool`, `optional`, defaults to :obj:`True`):
118
+ Whether to tie weight embeddings
119
+ gradient_checkpointing (:obj:`bool`, `optional`, defaults to :obj:`False`):
120
+ If True, use gradient checkpointing to save memory at the expense of slower backward pass.
121
+
122
+ Example::
123
+
124
+ >>> from transformers import EXAONEModel, ExaoneConfig
125
+
126
+ >>> # Initializing a EXAONE configuration
127
+ >>> configuration = ExaoneConfig()
128
+
129
+ >>> # Initializing a model from configuration
130
+ >>> model = EXAONEModel(configuration)
131
+
132
+ >>> # Accessing the model configuration
133
+ >>> configuration = model.config
134
+ """
135
+ model_type = "exaone"
136
+ keys_to_ignore_at_inference = ["past_key_values"]
137
+ attribute_map = {"num_hidden_layers": "num_layers"}
138
+
139
+ def __init__(
140
+ self,
141
+ vocab_size=102400,
142
+ max_position_embeddings=2048,
143
+ hidden_size=2048,
144
+ num_layers=32,
145
+ num_attention_heads=32,
146
+ num_key_value_heads=None,
147
+ intermediate_size=None,
148
+ activation_function="silu",
149
+ rope_theta=10000.0,
150
+ rope_scaling=None,
151
+ embed_dropout=0.0,
152
+ attention_dropout=0.0,
153
+ layer_norm_epsilon=1e-5,
154
+ initializer_range=0.02,
155
+ use_cache=True,
156
+ bos_token_id=0,
157
+ eos_token_id=2,
158
+ tie_word_embeddings=True,
159
+ **kwargs
160
+ ):
161
+ self.vocab_size = vocab_size
162
+ self.max_position_embeddings = max_position_embeddings
163
+ self.hidden_size = hidden_size
164
+ self.num_layers = num_layers
165
+ self.num_attention_heads = num_attention_heads
166
+ self.num_hidden_layers = num_layers
167
+ if num_key_value_heads is None:
168
+ num_key_value_heads = num_attention_heads
169
+ self.num_key_value_heads = num_key_value_heads
170
+ if intermediate_size:
171
+ self.intermediate_size = intermediate_size
172
+ else:
173
+ self.intermediate_size = hidden_size * 4
174
+ self.activation_function = activation_function
175
+ self.embed_dropout = embed_dropout
176
+ self.attention_dropout = attention_dropout
177
+ self.layer_norm_epsilon = layer_norm_epsilon
178
+ self.initializer_range = initializer_range
179
+ self.use_cache = use_cache
180
+ self.rope_theta = rope_theta
181
+ self.rope_scaling = rope_scaling
182
+
183
+ self.bos_token_id = bos_token_id
184
+ self.eos_token_id = eos_token_id
185
+
186
+ super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs)
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a6d6b1764e48cdb99b88e9ee6369059eec96b224a0666981ad3b6064220b02c1
3
+ size 5718265880
modeling_exaone.py ADDED
@@ -0,0 +1,1747 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2021 The LG AI Research EXAONE Lab
3
+ # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
4
+ #
5
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
6
+ # and OPT implementations in this library. It has been modified from its
7
+ # original forms to accommodate minor architectural differences compared
8
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
9
+ #
10
+ # Licensed under the Apache License, Version 2.0 (the "License");
11
+ # you may not use this file except in compliance with the License.
12
+ # You may obtain a copy of the License at
13
+ #
14
+ # http://www.apache.org/licenses/LICENSE-2.0
15
+ #
16
+ # Unless required by applicable law or agreed to in writing, software
17
+ # distributed under the License is distributed on an "AS IS" BASIS,
18
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
19
+ # See the License for the specific language governing permissions and
20
+ # limitations under the License.
21
+ """ LG AI Research EXAONE Lab"""
22
+ import sys
23
+ import os
24
+ from typing import List, Optional, Tuple, Union
25
+ from packaging import version
26
+
27
+ import torch
28
+ import torch.utils.checkpoint
29
+ from torch import nn
30
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
31
+ import torch.nn.functional as F
32
+
33
+ from transformers.activations import ACT2FN
34
+ from transformers.cache_utils import Cache, DynamicCache, StaticCache
35
+ from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS
36
+ from transformers.configuration_utils import PretrainedConfig
37
+ from transformers.modeling_attn_mask_utils import AttentionMaskConverter
38
+
39
+ from transformers.modeling_outputs import (
40
+ BaseModelOutputWithPast,
41
+ BaseModelOutputWithPastAndCrossAttentions,
42
+ CausalLMOutputWithCrossAttentions,
43
+ CausalLMOutputWithPast,
44
+ SequenceClassifierOutputWithPast,
45
+ QuestionAnsweringModelOutput,
46
+ )
47
+ from transformers.modeling_utils import PreTrainedModel
48
+ from transformers.utils import (
49
+ add_code_sample_docstrings,
50
+ add_start_docstrings,
51
+ add_start_docstrings_to_model_forward,
52
+ is_flash_attn_2_available,
53
+ logging,
54
+ )
55
+ from .configuration_exaone import ExaoneConfig
56
+ from torch.nn.utils import skip_init
57
+ import math
58
+ import numpy as np
59
+ from typing import List, Optional, Tuple, Union
60
+
61
+
62
+ if is_flash_attn_2_available():
63
+ try:
64
+ import inspect
65
+ from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input
66
+ from flash_attn import flash_attn_func, flash_attn_varlen_func
67
+
68
+ _flash_supports_window_size = "window_size" in list(inspect.signature(flash_attn_func).parameters)
69
+
70
+ import flash_attn
71
+ if version.parse(flash_attn.__version__) > version.parse('2.4.2'):
72
+ from flash_attn.ops.triton.layer_norm import rms_norm_fn
73
+ else:
74
+ from flash_attn.ops.triton.layernorm import rms_norm_fn
75
+ except:
76
+ pass
77
+
78
+
79
+ logger = logging.get_logger(__name__)
80
+
81
+ _CHECKPOINT_FOR_DOC = "exaone"
82
+ _CONFIG_FOR_DOC = "ExaoneConfig"
83
+
84
+ EXAONE_PRETRAINED_MODEL_ARCHIVE_LIST = [
85
+ "exaone",
86
+ ]
87
+
88
+
89
+ @torch.jit.script
90
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
91
+ """
92
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
93
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
94
+ """
95
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
96
+ if n_rep == 1:
97
+ return hidden_states
98
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
99
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
100
+
101
+
102
+ def apply_rotary_pos_emb(q, k, cos, sin, unsqueeze_dim=1):
103
+ """Applies Rotary Position Embedding to the query and key tensors.
104
+
105
+ Args:
106
+ q (`torch.Tensor`): The query tensor.
107
+ k (`torch.Tensor`): The key tensor.
108
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
109
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
110
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
111
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
112
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
113
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
114
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
115
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
116
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
117
+ Returns:
118
+ `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
119
+ """
120
+ cos = cos.unsqueeze(unsqueeze_dim)
121
+ sin = sin.unsqueeze(unsqueeze_dim)
122
+ q_embed = (q * cos) + (rotate_half(q) * sin)
123
+ k_embed = (k * cos) + (rotate_half(k) * sin)
124
+ return q_embed, k_embed
125
+
126
+
127
+ def rotate_half(x):
128
+ """ Rotates half the hidden dims of the input. """
129
+ x1 = x[..., : x.shape[-1] // 2]
130
+ x2 = x[..., x.shape[-1] // 2 :]
131
+ return torch.cat((-x2, x1), dim=-1)
132
+
133
+
134
+ # copied from llama
135
+ def _prepare_4d_causal_attention_mask_with_cache_position(
136
+ attention_mask: torch.Tensor,
137
+ sequence_length: int,
138
+ target_length: int,
139
+ dtype: torch.dtype,
140
+ device: torch.device,
141
+ min_dtype: float,
142
+ cache_position: torch.Tensor,
143
+ batch_size: int,
144
+ ):
145
+ """
146
+ Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
147
+ `(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
148
+
149
+ Args:
150
+ attention_mask (`torch.Tensor`):
151
+ A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`.
152
+ sequence_length (`int`):
153
+ The sequence length being processed.
154
+ target_length (`int`):
155
+ The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet.
156
+ dtype (`torch.dtype`):
157
+ The dtype to use for the 4D attention mask.
158
+ device (`torch.device`):
159
+ The device to plcae the 4D attention mask on.
160
+ min_dtype (`float`):
161
+ The minimum value representable with the dtype `dtype`.
162
+ cache_position (`torch.Tensor`):
163
+ Indices depicting the position of the input sequence tokens in the sequence.
164
+ batch_size (`torch.Tensor`):
165
+ Batch size.
166
+ """
167
+ if attention_mask is not None and attention_mask.dim() == 4:
168
+ # In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
169
+ causal_mask = attention_mask
170
+ else:
171
+ causal_mask = torch.full((sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device)
172
+ if sequence_length != 1:
173
+ causal_mask = torch.triu(causal_mask, diagonal=1)
174
+ causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
175
+ causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
176
+ if attention_mask is not None:
177
+ causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
178
+ mask_length = attention_mask.shape[-1]
179
+ padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
180
+ padding_mask = padding_mask == 0
181
+ causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
182
+ padding_mask, min_dtype
183
+ )
184
+
185
+ return causal_mask
186
+
187
+
188
+ class ExaoneRMSNorm(torch.nn.Module):
189
+ def __init__(self, hidden_size, eps=1e-6):
190
+ super().__init__()
191
+ self.eps = eps
192
+ self.weight = torch.nn.Parameter(torch.ones(hidden_size))
193
+
194
+ def forward(self, hidden_states):
195
+ input_dtype = hidden_states.dtype
196
+ hidden_states = hidden_states.to(torch.float32)
197
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
198
+ hidden_states = hidden_states * torch.rsqrt(variance + self.eps)
199
+ return self.weight * hidden_states.to(input_dtype)
200
+
201
+
202
+ class ExaoneTritonRMSNorm(torch.nn.Module):
203
+ def __init__(
204
+ self,
205
+ hidden_size: int = 0,
206
+ eps: float = 1e-5,
207
+ ):
208
+ super().__init__()
209
+ self.eps = eps
210
+ self.drop = None
211
+ self.weight = torch.nn.Parameter(torch.empty(hidden_size))
212
+ self.register_parameter("bias", None)
213
+ self.reset_parameters()
214
+
215
+ def reset_parameters(self):
216
+ torch.nn.init.ones_(self.weight)
217
+
218
+ def forward(self, x, residual=None, prenorm=False, residual_in_fp32=False):
219
+ return rms_norm_fn(
220
+ x,
221
+ self.weight,
222
+ self.bias,
223
+ residual=residual,
224
+ eps=self.eps,
225
+ dropout_p=self.drop.p if self.drop is not None and self.training else 0.0,
226
+ prenorm=prenorm,
227
+ residual_in_fp32=residual_in_fp32,
228
+ )
229
+
230
+
231
+ ALL_LAYERNORM_LAYERS.append(ExaoneRMSNorm)
232
+ ALL_LAYERNORM_LAYERS.append(ExaoneTritonRMSNorm)
233
+
234
+
235
+ class ExaoneRotaryEmbedding(nn.Module):
236
+ """
237
+ Common description for the functions named `_compute_XXX_rope_parameters()`
238
+ - Copied from `transformers.modeling_rope_utils` in v4.43, with some modifications.
239
+
240
+ Computes the inverse frequencies with linear scaling.
241
+ The EXAONE model supports 'default', 'linear', 'dynamic', and 'yarn'.
242
+
243
+ Args:
244
+ config (:obj:`~transformers.PretrainedConfig`):
245
+ The model configuration.
246
+ device (:obj:`torch.device`):
247
+ The device to use for initialization of the inverse frequencies.
248
+ seq_len (:obj:`int`, `optional`):
249
+ The current sequence length. Unused for this type of RoPE.
250
+ Returns:
251
+ Tuple of (:obj:`torch.Tensor`, :obj:`float`), containing the inverse frequencies for the RoPE embeddings and the
252
+ post-processing scaling factor applied to the computed cos/sin (unused in some types of RoPE).
253
+ """
254
+
255
+ def _compute_default_rope_parameters(
256
+ self,
257
+ config: Optional[PretrainedConfig],
258
+ device: Optional["torch.device"] = None,
259
+ seq_len: Optional[int] = None,
260
+ ) -> Tuple["torch.Tensor", float]:
261
+ base = config.rope_theta
262
+ partial_rotary_factor = config.partial_rotary_factor if hasattr(config, "partial_rotary_factor") else 1.0
263
+ dim = int((config.hidden_size // config.num_attention_heads) * partial_rotary_factor)
264
+
265
+ attention_factor = 1.0 # Unused in this type of RoPE
266
+
267
+ inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.int64).float().to(device) / dim))
268
+ return inv_freq, attention_factor
269
+
270
+ def _compute_linear_scaling_rope_parameters(
271
+ self,
272
+ config: Optional[PretrainedConfig],
273
+ device: Optional["torch.device"] = None,
274
+ seq_len: Optional[int] = None,
275
+ ) -> Tuple["torch.Tensor", float]:
276
+ factor = config.rope_scaling["factor"]
277
+ if factor < 1.0:
278
+ logger.warning_once(f"`rope_scaling`'s factor field must be a float >= 1, got {factor}")
279
+
280
+ inv_freq, attention_factor = self._compute_default_rope_parameters(config, device, seq_len)
281
+ inv_freq /= factor
282
+ return inv_freq, attention_factor
283
+
284
+ def _compute_dynamic_ntk_parameters(
285
+ self,
286
+ config: Optional[PretrainedConfig],
287
+ device: Optional["torch.device"] = None,
288
+ seq_len: Optional[int] = None,
289
+ ) -> Tuple["torch.Tensor", float]:
290
+ base = config.rope_theta
291
+ partial_rotary_factor = config.partial_rotary_factor if hasattr(config, "partial_rotary_factor") else 1.0
292
+ dim = int((config.hidden_size // config.num_attention_heads) * partial_rotary_factor)
293
+ max_position_embeddings = config.max_position_embeddings
294
+ factor = config.rope_scaling["factor"]
295
+ if factor < 1.0:
296
+ logger.warning_once(f"`rope_scaling`'s factor field must be a float >= 1, got {factor}")
297
+
298
+ attention_factor = 1.0 # Unused in this type of RoPE
299
+ seq_len = seq_len if seq_len is not None else max_position_embeddings
300
+
301
+ base = base * ((factor * seq_len / max_position_embeddings) - (factor - 1)) ** (dim / (dim - 2))
302
+ inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.int64).float().to(device) / dim))
303
+ return inv_freq, attention_factor
304
+
305
+ def _compute_yarn_parameters(
306
+ self,
307
+ config: PretrainedConfig,
308
+ device: "torch.device",
309
+ seq_len: Optional[int] = None,
310
+ ) -> Tuple["torch.Tensor", float]:
311
+ base = config.rope_theta
312
+ partial_rotary_factor = config.partial_rotary_factor if hasattr(config, "partial_rotary_factor") else 1.0
313
+ dim = int((config.hidden_size // config.num_attention_heads) * partial_rotary_factor)
314
+ max_position_embeddings = config.max_position_embeddings
315
+ factor = config.rope_scaling["factor"]
316
+ if factor < 1.0:
317
+ logger.warning_once(f"`rope_scaling`'s factor field must be a float >= 1, got {factor}")
318
+
319
+ # Sets the attention factor as suggested in the paper
320
+ attention_factor = config.rope_scaling.get("attention_factor")
321
+ if attention_factor is None:
322
+ attention_factor = 0.1 * math.log(factor) + 1.0
323
+ if attention_factor < 0:
324
+ logger.warning_once(
325
+ f"`rope_scaling`'s attention_factor field must be a float greater than 0, got {attention_factor}"
326
+ )
327
+
328
+ # Optional config options
329
+ # beta_fast/beta_slow: as suggested in the paper, default to 32/1 (correspondingly)
330
+ beta_fast = config.rope_scaling.get("beta_fast") or 32
331
+ beta_slow = config.rope_scaling.get("beta_slow") or 1
332
+ if not isinstance(beta_fast, float):
333
+ logger.warning_once(f"`rope_scaling`'s beta_fast field must be a float, got {beta_fast}")
334
+ if not isinstance(beta_slow, float):
335
+ logger.warning_once(f"`rope_scaling`'s beta_slow field must be a float, got {beta_fast}")
336
+ if beta_fast < beta_slow:
337
+ logger.warning_once(
338
+ f"`rope_scaling`'s beta_fast field must be greater than beta_slow, got beta_fast={beta_fast} "
339
+ f"(defaults to 32 if None) and beta_slow={beta_slow} (defaults to 1 if None)"
340
+ )
341
+
342
+ # Compute the inverse frequencies
343
+ def find_correction_dim(num_rotations, dim, base, max_position_embeddings):
344
+ """Inverse dimension formula to find the dimension based on the number of rotations"""
345
+ return (dim * math.log(max_position_embeddings / (num_rotations * 2 * math.pi))) / (2 * math.log(base))
346
+
347
+ def find_correction_range(low_rot, high_rot, dim, base, max_position_embeddings):
348
+ """Find dimension range bounds based on rotations"""
349
+ low = math.floor(find_correction_dim(low_rot, dim, base, max_position_embeddings))
350
+ high = math.ceil(find_correction_dim(high_rot, dim, base, max_position_embeddings))
351
+ return max(low, 0), min(high, dim - 1)
352
+
353
+ def linear_ramp_mask(min, max, dim):
354
+ if min == max:
355
+ max += 0.001 # Prevent singularity
356
+
357
+ linear_func = (torch.arange(dim, dtype=torch.float32) - min) / (max - min)
358
+ ramp_func = torch.clamp(linear_func, 0, 1)
359
+ return ramp_func
360
+
361
+ pos_freqs = base ** (torch.arange(0, dim, 2).float().to(device) / dim)
362
+ inv_freq_extrapolation = 1.0 / pos_freqs
363
+ inv_freq_interpolation = 1.0 / (factor * pos_freqs)
364
+
365
+ low, high = find_correction_range(beta_fast, beta_slow, dim, base, max_position_embeddings)
366
+
367
+ # Get n-dimensional rotational scaling corrected for extrapolation
368
+ inv_freq_mask = 1 - linear_ramp_mask(low, high, dim // 2).float().to(device)
369
+ inv_freq = inv_freq_interpolation * (1 - inv_freq_mask) + inv_freq_extrapolation * inv_freq_mask
370
+
371
+ return inv_freq, attention_factor
372
+
373
+ def __init__(self, config: ExaoneConfig, device=None):
374
+ ROPE_INIT_FUNCTIONS = {
375
+ "default": self._compute_default_rope_parameters,
376
+ "linear": self._compute_linear_scaling_rope_parameters,
377
+ "dynamic": self._compute_dynamic_ntk_parameters,
378
+ "yarn": self._compute_yarn_parameters,
379
+ }
380
+
381
+ super().__init__()
382
+ if config.rope_scaling is not None:
383
+ self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
384
+ else:
385
+ self.rope_type = "default"
386
+ self.max_seq_len = config.max_position_embeddings
387
+ self.original_max_seq_len = config.max_position_embeddings
388
+
389
+ self.config = config
390
+ if self.rope_type not in ROPE_INIT_FUNCTIONS:
391
+ raise KeyError(f"The EXAONE model does not support RoPE type: {self.rope_type}")
392
+ self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
393
+
394
+ inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
395
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
396
+ self.original_inv_freq = self.inv_freq
397
+
398
+ def _update_freq(self, position_ids, device):
399
+ """
400
+ dynamic RoPE layers should recompute `inv_freq` in the following situations:
401
+ 1 - growing beyond the cached sequence length (allow scaling)
402
+ 2 - the current sequence length is in the original scale (avoid losing precision with small sequences)
403
+ """
404
+ seq_len = torch.max(position_ids) + 1
405
+ if seq_len > self.max_seq_len: # expand to seq_len
406
+ inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, seq_len=seq_len)
407
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
408
+ self.max_seq_len = seq_len
409
+
410
+ if seq_len < self.original_max_seq_len and self.max_seq_len > self.original_max_seq_len: # reset to original
411
+ self.register_buffer("inv_freq", self.original_inv_freq, persistent=False)
412
+ self.max_seq_len = self.original_max_seq_len
413
+
414
+ @torch.no_grad()
415
+ def forward(self, x, position_ids):
416
+ if "dynamic" in self.rope_type:
417
+ self._update_freq(position_ids, device=x.device)
418
+
419
+ inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
420
+ position_ids_expanded = position_ids[:, None, :].float()
421
+
422
+ device_type = x.device.type
423
+ device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
424
+ with torch.autocast(device_type=device_type, enabled=False):
425
+ freqs = (inv_freq_expanded @ position_ids_expanded).transpose(1, 2)
426
+ emb = torch.cat((freqs, freqs), dim=-1)
427
+ cos, sin = emb.cos(), emb.sin()
428
+
429
+ cos, sin = cos * self.attention_scaling, sin * self.attention_scaling
430
+ return cos.to(x.dtype), sin.to(x.dtype)
431
+
432
+
433
+ class ExaoneSelfAttention(nn.Module):
434
+ def __init__(self, config: ExaoneConfig, layer_idx: Optional[int] = None):
435
+ super().__init__()
436
+ self.config = config
437
+ self.layer_idx = layer_idx
438
+ self.embed_dim = config.hidden_size
439
+ self.num_heads = config.num_attention_heads
440
+ self.head_dim = self.embed_dim // self.num_heads
441
+ self.num_key_value_heads = config.num_key_value_heads
442
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
443
+ self.attention_dropout_rate = config.attention_dropout
444
+
445
+ if self.head_dim * self.num_heads != self.embed_dim:
446
+ raise ValueError(
447
+ f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`: {self.num_heads})."
448
+ )
449
+
450
+ self.rotary = ExaoneRotaryEmbedding(config)
451
+
452
+ self.k_proj = nn.Linear(self.embed_dim, self.num_key_value_heads * self.head_dim, bias=False)
453
+ self.v_proj = nn.Linear(self.embed_dim, self.num_key_value_heads * self.head_dim, bias=False)
454
+ self.q_proj = nn.Linear(self.embed_dim, self.num_heads * self.head_dim, bias=False)
455
+ self.out_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False)
456
+
457
+ def forward(
458
+ self,
459
+ hidden_states: torch.Tensor,
460
+ attention_mask: Optional[torch.Tensor] = None,
461
+ position_ids: Optional[torch.LongTensor] = None,
462
+ past_key_value: Optional[Cache] = None,
463
+ output_attentions: Optional[bool] = False,
464
+ use_cache: Optional[bool] = False,
465
+ cache_position: Optional[torch.LongTensor] = None,
466
+ position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
467
+ **kwargs,
468
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
469
+
470
+ bsz, q_len, _ = hidden_states.size()
471
+ query_states = self.q_proj(hidden_states)
472
+ key_states = self.k_proj(hidden_states)
473
+ value_states = self.v_proj(hidden_states)
474
+
475
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
476
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
477
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
478
+
479
+ if position_embeddings is None:
480
+ cos, sin = self.rotary(value_states, position_ids=position_ids)
481
+ else:
482
+ cos, sin = position_embeddings
483
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
484
+
485
+ if past_key_value is not None:
486
+ # sin and cos are specific to RoPE models; cache_position needed for the static cache
487
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
488
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
489
+
490
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
491
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
492
+
493
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
494
+
495
+ if attention_mask is not None:
496
+ causal_mask = attention_mask[:, :, :, :key_states.shape[-2]]
497
+ attn_weights = attn_weights + causal_mask
498
+
499
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
500
+ attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout_rate, training=self.training)
501
+ attn_output = torch.matmul(attn_weights, value_states)
502
+
503
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
504
+ raise ValueError(
505
+ f"Attention outputs should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
506
+ f" {attn_output.size()}"
507
+ )
508
+
509
+ attn_output = attn_output.transpose(1, 2).contiguous()
510
+ attn_output = attn_output.reshape(bsz, q_len, self.embed_dim).contiguous()
511
+
512
+ attn_output = self.out_proj(attn_output)
513
+
514
+ if not output_attentions:
515
+ attn_weights = None
516
+
517
+ return attn_output, attn_weights, past_key_value
518
+
519
+
520
+ class ExaoneFlashAttention(ExaoneSelfAttention):
521
+ def __init__(self, *args, **kwargs):
522
+ super().__init__(*args, **kwargs)
523
+
524
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
525
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
526
+
527
+ def forward(
528
+ self,
529
+ hidden_states: torch.Tensor,
530
+ attention_mask: Optional[torch.Tensor] = None,
531
+ position_ids: Optional[torch.LongTensor] = None,
532
+ past_key_value: Optional[Cache] = None,
533
+ output_attentions: Optional[bool] = False,
534
+ use_cache: Optional[bool] = False,
535
+ cache_position: Optional[torch.LongTensor] = None,
536
+ position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
537
+ **kwargs,
538
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
539
+ if isinstance(past_key_value, StaticCache):
540
+ raise ValueError(
541
+ "`static` cache implementation is not compatible with `attn_implementation==flash_attention_2` "
542
+ "make sure to use `sdpa` in the mean time, and open an issue at https://github.com/huggingface/transformers"
543
+ )
544
+
545
+ output_attentions = False
546
+
547
+ bsz, q_len, h_size = hidden_states.size()
548
+
549
+ query_states = self.q_proj(hidden_states)
550
+ key_states = self.k_proj(hidden_states)
551
+ value_states = self.v_proj(hidden_states)
552
+
553
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
554
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
555
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
556
+
557
+ if position_embeddings is None:
558
+ cos, sin = self.rotary(value_states, position_ids=position_ids)
559
+ else:
560
+ cos, sin = position_embeddings
561
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
562
+
563
+ if past_key_value is not None:
564
+ # sin and cos are specific to RoPE models; cache_position needed for the static cache
565
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
566
+ # Only update cache as shape of [bsz, n_head, q_len, head_dim]
567
+ # TODO: need to be fixed when transformers' KV cache layout is changed
568
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
569
+
570
+ query_states = query_states.transpose(1, 2)
571
+ key_states = key_states.transpose(1, 2)
572
+ value_states = value_states.transpose(1, 2)
573
+
574
+ # In PEFT, usually we cast the layer norms in float32 for training stability reasons
575
+ # therefore the input hidden states gets silently casted in float32. Hence, we need
576
+ # cast them back in the correct dtype just to be sure everything works as expected.
577
+ input_dtype = query_states.dtype
578
+ if input_dtype == torch.float32:
579
+ if torch.is_autocast_enabled():
580
+ target_dtype = torch.get_autocast_gpu_dtype()
581
+ # Handle the case where the model is quantized
582
+ elif hasattr(self.config, "_pre_quantization_dtype"):
583
+ target_dtype = self.config._pre_quantization_dtype
584
+ else:
585
+ target_dtype = self.q_proj.weight.dtype
586
+
587
+ logger.warning_once(
588
+ f"The input hidden states seems to be silently casted in float32, this might be related to"
589
+ f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
590
+ f" {target_dtype}."
591
+ )
592
+
593
+ query_states = query_states.to(target_dtype)
594
+ key_states = key_states.to(target_dtype)
595
+ value_states = value_states.to(target_dtype)
596
+
597
+ dropout_rate = self.attention_dropout_rate if self.training else 0.0
598
+
599
+ attn_output = self._flash_attention_forward(
600
+ query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate, is_causal=True
601
+ )
602
+
603
+ attn_output = attn_output.reshape(bsz, q_len, self.embed_dim).contiguous()
604
+ attn_output = self.out_proj(attn_output)
605
+
606
+ if not output_attentions:
607
+ attn_weights = None
608
+
609
+ return attn_output, attn_weights, past_key_value
610
+
611
+ @staticmethod
612
+ def _flash_attention_forward(
613
+ query_states: torch.Tensor,
614
+ key_states: torch.Tensor,
615
+ value_states: torch.Tensor,
616
+ attention_mask: torch.Tensor,
617
+ query_length: int,
618
+ is_causal: bool,
619
+ dropout: float = 0.0,
620
+ softmax_scale: Optional[float] = None,
621
+ sliding_window: Optional[int] = None,
622
+ use_top_left_mask: bool = False,
623
+ softcap: Optional[float] = None,
624
+ deterministic: bool = os.environ.get("FLASH_ATTENTION_DETERMINISTIC", "0") == "1",
625
+ ):
626
+ """
627
+ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
628
+ first unpad the input, then computes the attention scores and pad the final attention scores.
629
+
630
+ Args:
631
+ query_states (`torch.Tensor`):
632
+ Input query states to be passed to Flash Attention API
633
+ key_states (`torch.Tensor`):
634
+ Input key states to be passed to Flash Attention API
635
+ value_states (`torch.Tensor`):
636
+ Input value states to be passed to Flash Attention API
637
+ attention_mask (`torch.Tensor`):
638
+ The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
639
+ position of padding tokens and 1 for the position of non-padding tokens.
640
+ dropout (`float`):
641
+ Attention dropout
642
+ softmax_scale (`float`, *optional*):
643
+ The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
644
+ use_top_left_mask (`bool`, defaults to `False`):
645
+ flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference.
646
+ softcap (`float`, *optional*):
647
+ Softcap for the attention logits, used e.g. in gemma2.
648
+ deterministic (`bool`, *optional*):
649
+ Determines if the deterministic option introduced in flash_attn>=2.4.1 is enabled.
650
+ """
651
+ if not use_top_left_mask:
652
+ causal = is_causal
653
+ else:
654
+ # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__.
655
+ causal = is_causal and query_length != 1
656
+
657
+ # Assuming 4D tensors, key_states.shape[1] is the key/value sequence length (source length).
658
+ use_sliding_windows = (
659
+ _flash_supports_window_size and sliding_window is not None and key_states.shape[1] > sliding_window
660
+ )
661
+ flash_kwargs = {"window_size": (sliding_window, sliding_window)} if use_sliding_windows else {}
662
+
663
+ if softcap is not None:
664
+ flash_kwargs["softcap"] = softcap
665
+
666
+ # Contains at least one padding token in the sequence
667
+ if attention_mask is not None:
668
+ batch_size = query_states.shape[0]
669
+ query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = ExaoneFlashAttention._upad_input(
670
+ query_states, key_states, value_states, attention_mask, query_length
671
+ )
672
+ cu_seqlens_q, cu_seqlens_k = cu_seq_lens
673
+ max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
674
+
675
+ attn_output_unpad = flash_attn_varlen_func(
676
+ query_states,
677
+ key_states,
678
+ value_states,
679
+ cu_seqlens_q=cu_seqlens_q,
680
+ cu_seqlens_k=cu_seqlens_k,
681
+ max_seqlen_q=max_seqlen_in_batch_q,
682
+ max_seqlen_k=max_seqlen_in_batch_k,
683
+ dropout_p=dropout,
684
+ softmax_scale=softmax_scale,
685
+ causal=causal,
686
+ **flash_kwargs,
687
+ )
688
+ attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
689
+ else:
690
+ attn_output = flash_attn_func(
691
+ query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal, **flash_kwargs
692
+ )
693
+
694
+ return attn_output
695
+
696
+ @staticmethod
697
+ def _upad_input(
698
+ query_layer: torch.Tensor,
699
+ key_layer: torch.Tensor,
700
+ value_layer: torch.Tensor,
701
+ attention_mask: torch.Tensor,
702
+ query_length: int,
703
+ ):
704
+ """
705
+ Unpads query, key, and values tensors, using a single dimension for all tokens even though they belong to different batches.
706
+
707
+ This function is used instead of `flash_attn.bert_padding.unpad_input` in order to avoid the recomputation of the same intermediary
708
+ tensors for query, key, value tensors.
709
+
710
+ Arguments:
711
+ query_layer (`torch.Tensor`):
712
+ Query state with padding. Shape: (batch_size, query_length, num_heads, head_dim).
713
+ key_layer (`torch.Tensor`):
714
+ Key state with padding. Shape: (batch_size, kv_seq_len, num_key_value_heads, head_dim).
715
+ value_layer (`torch.Tensor`):
716
+ Value state with padding. Shape: (batch_size, kv_seq_len, num_key_value_heads, head_dim).
717
+ attention_mask (`torch.Tensor`):
718
+ Boolean or int tensor of shape (batch_size, sequence_length), 1 means valid and 0 means not valid.
719
+ query_length (`int`):
720
+ Target length.
721
+
722
+ Return:
723
+ query_layer (`torch.Tensor):
724
+ Query state without padding. Shape: (total_target_length, num_heads, head_dim).
725
+ key_layer (`torch.Tensor`):
726
+ Key state with padding. Shape: (total_source_length, num_key_value_heads, head_dim).
727
+ value_layer (`torch.Tensor`):
728
+ Value state with padding. Shape: (total_source_length, num_key_value_heads, head_dim).
729
+ indices_q (`torch.Tensor`):
730
+ The indices of non-masked tokens from the flattened input target sequence.
731
+ (cu_seqlens_q, cu_seqlens_k) (`Tuple[int]`):
732
+ The cumulative sequence lengths for the target (query) and source (key, value), used to index into ragged (unpadded) tensors. `cu_seqlens` shape is (batch_size + 1,).
733
+ (max_seqlen_in_batch_q, max_seqlen_in_batch_k) (`Tuple[int]`):
734
+ Maximum sequence length in batch (`max_seqlen_in_batch_q` for the target sequence i.e. query, `max_seqlen_in_batch_k` for the source sequence i.e. key/value).
735
+ """
736
+ indices_k, cu_seqlens_k, max_seqlen_in_batch_k = ExaoneFlashAttention._get_unpad_data(attention_mask)
737
+ batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
738
+
739
+ key_layer = index_first_axis(key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k)
740
+ value_layer = index_first_axis(
741
+ value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
742
+ )
743
+ if query_length == kv_seq_len:
744
+ query_layer = index_first_axis(query_layer.reshape(batch_size * kv_seq_len, -1, head_dim), indices_k)
745
+ cu_seqlens_q = cu_seqlens_k
746
+ max_seqlen_in_batch_q = max_seqlen_in_batch_k
747
+ indices_q = indices_k
748
+ elif query_length == 1:
749
+ max_seqlen_in_batch_q = 1
750
+ cu_seqlens_q = torch.arange(
751
+ batch_size + 1, dtype=torch.int32, device=query_layer.device
752
+ ) # There is a memcpy here, that is very bad.
753
+ indices_q = cu_seqlens_q[:-1]
754
+ query_layer = query_layer.squeeze(1)
755
+ else:
756
+ # The -q_len: slice assumes left padding.
757
+ attention_mask = attention_mask[:, -query_length:]
758
+ query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
759
+
760
+ return (
761
+ query_layer,
762
+ key_layer,
763
+ value_layer,
764
+ indices_q,
765
+ (cu_seqlens_q, cu_seqlens_k),
766
+ (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
767
+ )
768
+
769
+ @staticmethod
770
+ def _get_unpad_data(attention_mask: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, int]:
771
+ """
772
+ Retrieves indexing data required to repad unpadded (ragged) tensors.
773
+
774
+ Arguments:
775
+ attention_mask (`torch.Tensor`):
776
+ Boolean or int tensor of shape (batch_size, sequence_length), 1 means valid and 0 means not valid.
777
+
778
+ Return:
779
+ indices (`torch.Tensor):
780
+ The indices of non-masked tokens from the flattened input sequence.
781
+ cu_seqlens (`torch.Tensor`):
782
+ The cumulative sequence lengths, used to index into ragged (unpadded) tensors. `cu_seqlens` shape is (batch_size + 1,).
783
+ max_seqlen_in_batch (`int`):
784
+ Maximum sequence length in batch.
785
+ """
786
+ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
787
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
788
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
789
+ cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
790
+ return (
791
+ indices,
792
+ cu_seqlens,
793
+ max_seqlen_in_batch,
794
+ )
795
+
796
+
797
+ class ExaoneSdpaAttention(ExaoneSelfAttention):
798
+ def __init__(self, *args, **kwargs):
799
+ super().__init__(*args, **kwargs)
800
+
801
+ def forward(
802
+ self,
803
+ hidden_states: torch.Tensor,
804
+ attention_mask: Optional[torch.Tensor] = None,
805
+ position_ids: Optional[torch.LongTensor] = None,
806
+ past_key_value: Optional[Cache] = None,
807
+ output_attentions: Optional[bool] = False,
808
+ use_cache: Optional[bool] = False,
809
+ cache_position: Optional[torch.LongTensor] = None,
810
+ position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
811
+ **kwargs,
812
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
813
+
814
+ if output_attentions:
815
+ logger.warning_once(
816
+ "ExaoneModel is using ExaoneSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
817
+ 'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
818
+ )
819
+ return super().forward(
820
+ hidden_states=hidden_states,
821
+ attention_mask=attention_mask,
822
+ position_ids=position_ids,
823
+ past_key_value=past_key_value,
824
+ output_attentions=output_attentions,
825
+ use_cache=use_cache,
826
+ cache_position=cache_position,
827
+ position_embeddings=position_embeddings,
828
+ **kwargs,
829
+ )
830
+
831
+ bsz, q_len, _ = hidden_states.size()
832
+
833
+ query_states = self.q_proj(hidden_states)
834
+ key_states = self.k_proj(hidden_states)
835
+ value_states = self.v_proj(hidden_states)
836
+
837
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
838
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
839
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
840
+
841
+ if position_embeddings is None:
842
+ cos, sin = self.rotary(value_states, position_ids=position_ids)
843
+ else:
844
+ cos, sin = position_embeddings
845
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
846
+
847
+ if past_key_value is not None:
848
+ # sin and cos are specific to RoPE models; cache_position needed for the static cache
849
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
850
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
851
+
852
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
853
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
854
+
855
+ causal_mask = attention_mask
856
+ if attention_mask is not None:
857
+ causal_mask = causal_mask[:, :, :, :key_states.shape[-2]]
858
+
859
+ # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
860
+ # Reference: https://github.com/pytorch/pytorch/issues/112577.
861
+ if query_states.device.type == "cuda" and causal_mask is not None:
862
+ query_states = query_states.contiguous()
863
+ key_states = key_states.contiguous()
864
+ value_states = value_states.contiguous()
865
+
866
+ # We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
867
+ # in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
868
+ is_causal = True if causal_mask is None and q_len > 1 else False
869
+
870
+ attn_output = torch.nn.functional.scaled_dot_product_attention(
871
+ query_states,
872
+ key_states,
873
+ value_states,
874
+ attn_mask=causal_mask,
875
+ dropout_p=self.attention_dropout_rate if self.training else 0.0,
876
+ is_causal=is_causal,
877
+ )
878
+
879
+ attn_output = attn_output.transpose(1, 2).contiguous()
880
+ attn_output = attn_output.reshape(bsz, q_len, self.embed_dim).contiguous()
881
+
882
+ attn_output = self.out_proj(attn_output)
883
+
884
+ return attn_output, None, past_key_value
885
+
886
+
887
+ class ExaoneAttention(nn.Module):
888
+ def __init__(self, config, layer_id=0):
889
+ super().__init__()
890
+ self.layer_id = layer_id
891
+ if 'flash' in config._attn_implementation:
892
+ self.attention = ExaoneFlashAttention(config, self.layer_id)
893
+ elif 'sdpa' in config._attn_implementation:
894
+ self.attention = ExaoneSdpaAttention(config, self.layer_id)
895
+ else:
896
+ self.attention = ExaoneSelfAttention(config, self.layer_id)
897
+
898
+ def forward(
899
+ self,
900
+ hidden_states: torch.Tensor,
901
+ attention_mask: Optional[torch.Tensor] = None,
902
+ position_ids: Optional[torch.LongTensor] = None,
903
+ past_key_value: Optional[Cache] = None,
904
+ output_attentions: Optional[bool] = False,
905
+ use_cache: Optional[bool] = False,
906
+ cache_position: Optional[torch.LongTensor] = None,
907
+ position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
908
+ **kwargs,
909
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
910
+
911
+ return self.attention(
912
+ hidden_states=hidden_states,
913
+ attention_mask=attention_mask,
914
+ position_ids=position_ids,
915
+ past_key_value=past_key_value,
916
+ output_attentions=output_attentions,
917
+ use_cache=use_cache,
918
+ cache_position=cache_position,
919
+ position_embeddings=position_embeddings,
920
+ **kwargs,
921
+ )
922
+
923
+
924
+ class ExaoneGatedMLP(nn.Module):
925
+ def __init__(self, intermediate_size, config):
926
+ super().__init__()
927
+ self.config = config
928
+ embed_dim = config.hidden_size
929
+ self.c_fc_0 = nn.Linear(embed_dim, intermediate_size, bias=False)
930
+ self.c_fc_1 = nn.Linear(embed_dim, intermediate_size, bias=False)
931
+ self.c_proj = nn.Linear(intermediate_size, embed_dim, bias=False)
932
+ self.act = ACT2FN[config.activation_function]
933
+
934
+ def forward(self, hidden_states):
935
+ output_proj = self.c_proj(self.act(self.c_fc_0(hidden_states)) * self.c_fc_1(hidden_states))
936
+ return output_proj
937
+
938
+
939
+ class ExaoneBlock(nn.Module):
940
+ def __init__(self, config, layer_id):
941
+ super().__init__()
942
+ self.config = config
943
+ hidden_size = config.hidden_size
944
+ inner_dim = config.intermediate_size if config.intermediate_size is not None else 4 * hidden_size
945
+ self.ln_1 = ExaoneRMSNorm(hidden_size = hidden_size, eps=config.layer_norm_epsilon)
946
+ self.attn = ExaoneAttention(config, layer_id)
947
+ self.ln_2 = ExaoneRMSNorm(hidden_size = hidden_size, eps=config.layer_norm_epsilon)
948
+ self.mlp = ExaoneGatedMLP(inner_dim, config)
949
+
950
+ def forward(
951
+ self,
952
+ hidden_states: torch.Tensor,
953
+ attention_mask: Optional[torch.Tensor] = None,
954
+ position_ids: Optional[torch.LongTensor] = None,
955
+ past_key_value: Optional[Cache] = None,
956
+ output_attentions: Optional[bool] = False,
957
+ use_cache: Optional[bool] = False,
958
+ cache_position: Optional[torch.LongTensor] = None,
959
+ position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
960
+ **kwargs,
961
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
962
+
963
+ residual = hidden_states
964
+ hidden_states = self.ln_1(hidden_states)
965
+
966
+ hidden_states, self_attn_weights, present_key_value = self.attn(
967
+ hidden_states=hidden_states,
968
+ attention_mask=attention_mask,
969
+ position_ids=position_ids,
970
+ past_key_value=past_key_value,
971
+ output_attentions=output_attentions,
972
+ use_cache=use_cache,
973
+ cache_position=cache_position,
974
+ position_embeddings=position_embeddings,
975
+ **kwargs,
976
+ )
977
+ # residual connection
978
+ hidden_states = residual + hidden_states
979
+
980
+ residual = hidden_states
981
+ hidden_states = self.ln_2(hidden_states)
982
+ hidden_states = self.mlp(hidden_states)
983
+
984
+ hidden_states = residual + hidden_states
985
+
986
+ outputs = (hidden_states,)
987
+
988
+ if output_attentions:
989
+ outputs += (self_attn_weights,)
990
+
991
+ if use_cache:
992
+ outputs += (present_key_value,)
993
+
994
+ return outputs
995
+
996
+
997
+ class ExaonePreTrainedModel(PreTrainedModel):
998
+ """
999
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
1000
+ models.
1001
+ """
1002
+
1003
+ config_class = ExaoneConfig
1004
+ base_model_prefix = "transformer"
1005
+ supports_gradient_checkpointing = True
1006
+ _no_split_modules = ["ExaoneBlock"]
1007
+ _skip_keys_device_placement = "past_key_values"
1008
+ _supports_flash_attn_2 = True
1009
+ _supports_sdpa = True
1010
+ _supports_cache_class = True
1011
+
1012
+ def __init__(self, *inputs, **kwargs):
1013
+ super().__init__(*inputs, **kwargs)
1014
+
1015
+ def _init_weights(self, module):
1016
+ """Initialize the weights."""
1017
+ if isinstance(module, (nn.Linear,)):
1018
+ # Slightly different from the TF version which uses truncated_normal for initialization
1019
+ # cf https://github.com/pytorch/pytorch/pull/5617
1020
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
1021
+ if module.bias is not None:
1022
+ module.bias.data.zero_()
1023
+ elif isinstance(module, nn.Embedding):
1024
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
1025
+ if module.padding_idx is not None:
1026
+ module.weight.data[module.padding_idx].zero_()
1027
+ elif isinstance(module, ExaoneRMSNorm):
1028
+ module.weight.data.fill_(1.0)
1029
+
1030
+
1031
+ EXAONE_START_DOCSTRING = r"""
1032
+
1033
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
1034
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
1035
+ etc.)
1036
+
1037
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
1038
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
1039
+ and behavior.
1040
+
1041
+ Parameters:
1042
+ config (:class:`~transformers.ExaoneConfig`): Model configuration class with all the parameters of the model.
1043
+ Initializing with a config file does not load the weights associated with the model, only the
1044
+ configuration. Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model weights.
1045
+ """
1046
+
1047
+ EXAONE_INPUTS_DOCSTRING = r"""
1048
+ Args:
1049
+ input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, input_ids_length)`):
1050
+ :obj:`input_ids_length` = ``sequence_length`` if :obj:`past_key_values` is ``None`` else
1051
+ ``past_key_values.get_seq_length()`` (``sequence_length`` of input past key value states). Indices of input
1052
+ sequence tokens in the vocabulary.
1053
+
1054
+ If :obj:`past_key_values` is used, only ``input_ids`` that do not have their past calculated should be
1055
+ passed as ``input_ids``.
1056
+
1057
+ `What are input IDs? <../glossary.html#input-ids>`__
1058
+ attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
1059
+ Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``:
1060
+
1061
+ - 1 for tokens that are **not masked**,
1062
+ - 0 for tokens that are **masked**.
1063
+
1064
+ `What are attention masks? <../glossary.html#attention-mask>`__
1065
+ position_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
1066
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range ``[0,
1067
+ config.max_position_embeddings - 1]``.
1068
+
1069
+ `What are position IDs? <../glossary.html#position-ids>`_
1070
+ past_key_values (:obj:`Cache`, `optional`):
1071
+ Contains precomputed hidden-states (key and values in the attention blocks) as computed by the model (see
1072
+ :obj:`past_key_values` output below). Can be used to speed up sequential decoding. This typically consists
1073
+ in the `past_key_values` returned by the model at a previous stage of decoding, when `use_cache=True` or
1074
+ `config.use_cache=True`.
1075
+ inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
1076
+ Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation.
1077
+ This is useful if you want more control over how to convert :obj:`input_ids` indices into associated
1078
+ vectors than the model's internal embedding lookup matrix.
1079
+
1080
+ If :obj:`past_key_values` is used, optionally only the last :obj:`inputs_embeds` have to be input (see
1081
+ :obj:`past_key_values`).
1082
+ use_cache (:obj:`bool`, `optional`):
1083
+ If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up
1084
+ decoding (see :obj:`past_key_values`).
1085
+ output_attentions (:obj:`bool`, `optional`):
1086
+ Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned
1087
+ tensors for more detail.
1088
+ output_hidden_states (:obj:`bool`, `optional`):
1089
+ Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for
1090
+ more detail.
1091
+ return_dict (:obj:`bool`, `optional`):
1092
+ Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple.
1093
+ cache_position (:obj:`torch.LongTensor` of shape :obj:`(sequence_length)`, `optional`):
1094
+ Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
1095
+ this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
1096
+ the complete sequence length.
1097
+ """
1098
+
1099
+
1100
+ @add_start_docstrings(
1101
+ "The bare EXAONE Model transformer outputting raw hidden-states without any specific head on top.",
1102
+ EXAONE_START_DOCSTRING,
1103
+ )
1104
+ class ExaoneModel(ExaonePreTrainedModel):
1105
+ def __init__(self, config):
1106
+ super().__init__(config)
1107
+ self.config = config
1108
+ self.embed_dim = config.hidden_size
1109
+ self.wte = nn.Embedding(config.vocab_size, self.embed_dim, self.config.pad_token_id)
1110
+ self.drop = nn.Dropout(float(config.embed_dropout))
1111
+ self.h = nn.ModuleList([ExaoneBlock(config, layer_id=i) for i in range(config.num_layers)])
1112
+ self.ln_f = ExaoneRMSNorm(hidden_size=self.embed_dim, eps=config.layer_norm_epsilon)
1113
+ self.rotary = ExaoneRotaryEmbedding(config)
1114
+ self.gradient_checkpointing = False
1115
+ # Initialize weights and apply final processing
1116
+ self.post_init()
1117
+
1118
+ def get_input_embeddings(self):
1119
+ return self.wte
1120
+
1121
+ def set_input_embeddings(self, new_embeddings):
1122
+ self.wte = new_embeddings
1123
+
1124
+ @add_start_docstrings_to_model_forward(EXAONE_INPUTS_DOCSTRING)
1125
+ @add_code_sample_docstrings(
1126
+ checkpoint=_CHECKPOINT_FOR_DOC,
1127
+ output_type=BaseModelOutputWithPastAndCrossAttentions,
1128
+ config_class=_CONFIG_FOR_DOC,
1129
+ )
1130
+ def forward(
1131
+ self,
1132
+ input_ids: Optional[torch.Tensor] = None,
1133
+ attention_mask: Optional[torch.Tensor] = None,
1134
+ position_ids: Optional[torch.Tensor] = None,
1135
+ past_key_values: Optional[Cache] = None,
1136
+ inputs_embeds: Optional[torch.Tensor] = None,
1137
+ use_cache: Optional[bool] = None,
1138
+ output_attentions: Optional[bool] = None,
1139
+ output_hidden_states: Optional[bool] = None,
1140
+ return_dict: Optional[bool] = None,
1141
+ cache_position: Optional[torch.LongTensor] = None,
1142
+ ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPast]:
1143
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1144
+ output_hidden_states = (
1145
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1146
+ )
1147
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
1148
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1149
+
1150
+ if self.gradient_checkpointing and self.training:
1151
+ if use_cache:
1152
+ logger.warning_once(
1153
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
1154
+ )
1155
+ use_cache = False
1156
+
1157
+ if input_ids is not None and inputs_embeds is not None:
1158
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
1159
+ elif input_ids is not None:
1160
+ batch_size, seq_length = input_ids.shape[:2]
1161
+ elif inputs_embeds is not None:
1162
+ batch_size, seq_length = inputs_embeds.shape[:2]
1163
+ else:
1164
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
1165
+
1166
+ return_legacy_cache = False
1167
+ if (
1168
+ use_cache and not isinstance(past_key_values, Cache) and not self.training
1169
+ ): # kept for BC (non `Cache` `past_key_values` inputs)
1170
+ return_legacy_cache = True
1171
+ past_key_values = DynamicCache.from_legacy_cache(past_key_values)
1172
+ logger.warning_once(
1173
+ "We detected that you are passing `past_key_values` as a tuple and this is deprecated and will be removed in v4.43. "
1174
+ "Please use an appropriate `Cache` class (https://huggingface.co/docs/transformers/v4.41.3/en/internal/generation_utils#transformers.Cache)"
1175
+ )
1176
+
1177
+ if inputs_embeds is None:
1178
+ inputs_embeds = self.wte(input_ids)
1179
+
1180
+ if cache_position is None:
1181
+ past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
1182
+ cache_position = torch.arange(
1183
+ past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
1184
+ )
1185
+ if position_ids is None:
1186
+ position_ids = cache_position.unsqueeze(0)
1187
+
1188
+ causal_mask = self._update_causal_mask(
1189
+ attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
1190
+ )
1191
+
1192
+ hidden_states = inputs_embeds
1193
+ hidden_states = self.drop(hidden_states)
1194
+
1195
+ position_embeddings = self.rotary(hidden_states, position_ids)
1196
+
1197
+ all_hidden_states = () if output_hidden_states else None
1198
+ all_self_attns = () if output_attentions else None
1199
+ next_decoder_cache = None
1200
+
1201
+ for block in self.h:
1202
+ if output_hidden_states:
1203
+ all_hidden_states = all_hidden_states + (hidden_states,)
1204
+
1205
+ if self.gradient_checkpointing and self.training:
1206
+ outputs = self._gradient_checkpointing_func(
1207
+ block.__call__,
1208
+ hidden_states,
1209
+ causal_mask,
1210
+ position_ids,
1211
+ past_key_values,
1212
+ output_attentions,
1213
+ use_cache,
1214
+ cache_position,
1215
+ position_embeddings,
1216
+ )
1217
+ else:
1218
+ outputs = block(
1219
+ hidden_states,
1220
+ attention_mask=causal_mask,
1221
+ position_ids=position_ids,
1222
+ past_key_value=past_key_values,
1223
+ output_attentions=output_attentions,
1224
+ use_cache=use_cache,
1225
+ cache_position=cache_position,
1226
+ position_embeddings=position_embeddings,
1227
+ )
1228
+
1229
+ hidden_states = outputs[0]
1230
+ if use_cache:
1231
+ next_decoder_cache = outputs[2 if output_attentions else 1]
1232
+
1233
+ if output_attentions:
1234
+ all_self_attns += (outputs[1],)
1235
+
1236
+ hidden_states = self.ln_f(hidden_states)
1237
+ # Add last hidden state
1238
+ if output_hidden_states:
1239
+ all_hidden_states += (hidden_states,)
1240
+
1241
+ next_cache = None
1242
+ if use_cache:
1243
+ next_cache = next_decoder_cache.to_legacy_cache() if return_legacy_cache else next_decoder_cache
1244
+ if not return_dict:
1245
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
1246
+
1247
+ return BaseModelOutputWithPast(
1248
+ last_hidden_state=hidden_states,
1249
+ past_key_values=next_cache,
1250
+ hidden_states=all_hidden_states,
1251
+ attentions=all_self_attns,
1252
+ )
1253
+
1254
+ # copied from llama
1255
+ def _update_causal_mask(
1256
+ self,
1257
+ attention_mask: torch.Tensor,
1258
+ input_tensor: torch.Tensor,
1259
+ cache_position: torch.Tensor,
1260
+ past_key_values: Cache,
1261
+ output_attentions: bool,
1262
+ ):
1263
+ # TODO: As of torch==2.2.0, the `attention_mask` passed to the model in `generate` is 2D and of dynamic length even when the static
1264
+ # KV cache is used. This is an issue for torch.compile which then recaptures cudagraphs at each decode steps due to the dynamic shapes.
1265
+ # (`recording cudagraph tree for symint key 13`, etc.), which is VERY slow. A workaround is `@torch.compiler.disable`, but this prevents using
1266
+ # `fullgraph=True`. See more context in https://github.com/huggingface/transformers/pull/29114
1267
+
1268
+ if self.config._attn_implementation == "flash_attention_2":
1269
+ if attention_mask is not None and 0.0 in attention_mask:
1270
+ return attention_mask
1271
+ return None
1272
+
1273
+ # For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
1274
+ # order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
1275
+ # to infer the attention mask.
1276
+ past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
1277
+ using_static_cache = isinstance(past_key_values, StaticCache)
1278
+
1279
+ # When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
1280
+ if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
1281
+ if AttentionMaskConverter._ignore_causal_mask_sdpa(
1282
+ attention_mask,
1283
+ inputs_embeds=input_tensor,
1284
+ past_key_values_length=past_seen_tokens,
1285
+ is_training=self.training,
1286
+ ):
1287
+ return None
1288
+
1289
+ dtype, device = input_tensor.dtype, input_tensor.device
1290
+ min_dtype = torch.finfo(dtype).min
1291
+ sequence_length = input_tensor.shape[1]
1292
+ if using_static_cache:
1293
+ target_length = past_key_values.get_max_length()
1294
+ else:
1295
+ target_length = (
1296
+ attention_mask.shape[-1]
1297
+ if isinstance(attention_mask, torch.Tensor)
1298
+ else past_seen_tokens + sequence_length + 1
1299
+ )
1300
+
1301
+ # In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
1302
+ causal_mask = _prepare_4d_causal_attention_mask_with_cache_position(
1303
+ attention_mask,
1304
+ sequence_length=sequence_length,
1305
+ target_length=target_length,
1306
+ dtype=dtype,
1307
+ device=device,
1308
+ min_dtype=min_dtype,
1309
+ cache_position=cache_position,
1310
+ batch_size=input_tensor.shape[0],
1311
+ )
1312
+
1313
+ if (
1314
+ self.config._attn_implementation == "sdpa"
1315
+ and attention_mask is not None
1316
+ and attention_mask.device.type == "cuda"
1317
+ and not output_attentions
1318
+ ):
1319
+ # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
1320
+ # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
1321
+ # Details: https://github.com/pytorch/pytorch/issues/110213
1322
+ causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
1323
+
1324
+ return causal_mask
1325
+
1326
+
1327
+ @add_start_docstrings(
1328
+ """
1329
+ The EXAONE Model transformer with a language modeling head on top (linear layer with weights tied to the input
1330
+ embeddings).
1331
+ """,
1332
+ EXAONE_START_DOCSTRING,
1333
+ )
1334
+ class ExaoneForCausalLM(ExaonePreTrainedModel):
1335
+
1336
+ def __init__(self, config):
1337
+ super().__init__(config)
1338
+ self.transformer = ExaoneModel(config)
1339
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
1340
+ self.config = config
1341
+ # Initialize weights and apply final processing
1342
+ self.post_init()
1343
+
1344
+ def get_output_embeddings(self):
1345
+ return self.lm_head
1346
+
1347
+ def set_output_embeddings(self, new_embeddings):
1348
+ self.lm_head = new_embeddings
1349
+
1350
+ @add_start_docstrings_to_model_forward(EXAONE_INPUTS_DOCSTRING)
1351
+ @add_code_sample_docstrings(
1352
+ checkpoint=_CHECKPOINT_FOR_DOC,
1353
+ output_type=BaseModelOutputWithPast,
1354
+ config_class=_CONFIG_FOR_DOC,
1355
+ )
1356
+ def forward(
1357
+ self,
1358
+ input_ids: Optional[torch.Tensor] = None,
1359
+ attention_mask: Optional[torch.Tensor] = None,
1360
+ position_ids: Optional[torch.Tensor] = None,
1361
+ past_key_values: Optional[Cache] = None,
1362
+ inputs_embeds: Optional[torch.Tensor] = None,
1363
+ labels: Optional[torch.Tensor] = None,
1364
+ use_cache: Optional[bool] = None,
1365
+ output_attentions: Optional[bool] = None,
1366
+ output_hidden_states: Optional[bool] = None,
1367
+ return_dict: Optional[bool] = None,
1368
+ cache_position: Optional[torch.LongTensor] = None,
1369
+ ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPast]:
1370
+ r"""
1371
+ Args:
1372
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1373
+ Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
1374
+ `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
1375
+ are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
1376
+
1377
+ Example:
1378
+
1379
+ ```python
1380
+ >>> from transformers import AutoModelForCausalLM, AutoTokenizer
1381
+
1382
+ >>> model = AutoModelForCausalLM.from_pretrained("LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct",
1383
+ trust_remote_code=True)
1384
+ >>> tokenizer = AutoTokenizer.from_pretrained("LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct")
1385
+
1386
+ >>> prompt = "Explain how wonderful you are"
1387
+ >>> messages = [
1388
+ {"role": "system", "content": "You are a helpful assistant."},
1389
+ {"role": "user", "content": prompt}
1390
+ ]
1391
+ >>> input_ids = tokenizer.apply_chat_template(
1392
+ messages,
1393
+ tokenize=True,
1394
+ add_generation_prompt=True,
1395
+ return_tensors="pt"
1396
+ )
1397
+
1398
+ >>> output = model.generate(input_ids, max_new_tokens=128)
1399
+ >>> tokenizer.decode(output[0], skip_special_tokens=True)
1400
+ "[|system|]You are a helpful assistant.\n[|user|]Explain how wonderful you are\n[|assistant|]Thank you for your kind words! I'm here to assist you with information, answer questions, and help you in any way I can. My goal is to provide accurate, helpful, and timely responses. Whether you need help with a specific task, want to learn something new, or just need someone to talk to, I'm here for you. How can I assist you today?"
1401
+ ```
1402
+ """
1403
+
1404
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1405
+ output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1406
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1407
+ transformer_outputs = self.transformer(
1408
+ input_ids,
1409
+ attention_mask=attention_mask,
1410
+ past_key_values=past_key_values,
1411
+ position_ids=position_ids,
1412
+ inputs_embeds=inputs_embeds,
1413
+ use_cache=use_cache,
1414
+ output_attentions=output_attentions,
1415
+ output_hidden_states=output_hidden_states,
1416
+ return_dict=return_dict,
1417
+ cache_position=cache_position,
1418
+ )
1419
+ hidden_states = transformer_outputs[0]
1420
+ lm_logits = self.lm_head(hidden_states)
1421
+ lm_logits = lm_logits.float()
1422
+ loss = None
1423
+ if labels is not None:
1424
+ lm_logits = lm_logits.to(torch.float32)
1425
+
1426
+ # Shift so that tokens < n predict n
1427
+ shift_logits = lm_logits[..., :-1, :].contiguous()
1428
+ shift_labels = labels[..., 1:].contiguous()
1429
+ # Flatten the tokens
1430
+ loss_fct = CrossEntropyLoss()
1431
+ loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
1432
+
1433
+ lm_logits = lm_logits.to(hidden_states.dtype)
1434
+ loss = loss.to(hidden_states.dtype)
1435
+
1436
+ if not return_dict:
1437
+ output = (lm_logits,) + transformer_outputs[1:]
1438
+ return ((loss,) + output) if loss is not None else output
1439
+
1440
+ return CausalLMOutputWithPast(
1441
+ loss=loss,
1442
+ logits=lm_logits,
1443
+ past_key_values=transformer_outputs.past_key_values,
1444
+ hidden_states=transformer_outputs.hidden_states,
1445
+ attentions=transformer_outputs.attentions,
1446
+ )
1447
+
1448
+ def prepare_inputs_for_generation(
1449
+ self,
1450
+ input_ids,
1451
+ past_key_values=None,
1452
+ attention_mask=None,
1453
+ inputs_embeds=None,
1454
+ cache_position=None,
1455
+ position_ids=None,
1456
+ use_cache=True,
1457
+ **kwargs,
1458
+ ):
1459
+ # If we have cache: let's slice `input_ids` through `cache_position`, to keep only the unprocessed tokens
1460
+ # Exception 1: when passing input_embeds, input_ids may be missing entries
1461
+ # Exception 2: some generation methods do special slicing of input_ids, so we don't need to do it here
1462
+ if past_key_values is not None:
1463
+ if inputs_embeds is not None: # Exception 1
1464
+ input_ids = input_ids[:, -cache_position.shape[0] :]
1465
+ elif input_ids.shape[1] != cache_position.shape[0]: # Default case (the "else", a no op, is Exception 2)
1466
+ input_ids = input_ids[:, cache_position]
1467
+
1468
+ if attention_mask is not None and position_ids is None:
1469
+ # create position_ids on the fly for batch generation
1470
+ position_ids = attention_mask.long().cumsum(-1) - 1
1471
+ position_ids.masked_fill_(attention_mask == 0, 1)
1472
+ if past_key_values:
1473
+ position_ids = position_ids[:, -input_ids.shape[1] :]
1474
+
1475
+ # This `clone` call is needed to avoid recapturing cuda graphs with `torch.compile`'s `mode="reduce-overhead`, as otherwise the input `position_ids` would have various stride during the decoding. Here, simply using `.contiguous()` is not sufficient as in the batch size = 1 case, `position_ids` is already contiguous but with varying stride which retriggers a capture.
1476
+ position_ids = position_ids.clone(memory_format=torch.contiguous_format)
1477
+
1478
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
1479
+ if inputs_embeds is not None and cache_position[0] == 0:
1480
+ model_inputs = {"inputs_embeds": inputs_embeds}
1481
+ else:
1482
+ model_inputs = {"input_ids": input_ids}
1483
+
1484
+ if isinstance(past_key_values, StaticCache) and attention_mask.ndim == 2:
1485
+ if inputs_embeds is not None:
1486
+ batch_size, sequence_length = inputs_embeds.shape
1487
+ device = inputs_embeds.device
1488
+ else:
1489
+ batch_size, sequence_length = input_ids.shape
1490
+ device = input_ids.device
1491
+
1492
+ dtype = self.lm_head.weight.dtype
1493
+ min_dtype = torch.finfo(dtype).min
1494
+
1495
+ attention_mask = _prepare_4d_causal_attention_mask_with_cache_position(
1496
+ attention_mask,
1497
+ sequence_length=sequence_length,
1498
+ target_length=past_key_values.get_max_length(),
1499
+ dtype=dtype,
1500
+ device=device,
1501
+ min_dtype=min_dtype,
1502
+ cache_position=cache_position,
1503
+ batch_size=batch_size,
1504
+ )
1505
+
1506
+ model_inputs.update(
1507
+ {
1508
+ "position_ids": position_ids,
1509
+ "cache_position": cache_position,
1510
+ "past_key_values": past_key_values,
1511
+ "use_cache": use_cache,
1512
+ "attention_mask": attention_mask,
1513
+ }
1514
+ )
1515
+ return model_inputs
1516
+
1517
+ @staticmethod
1518
+ def _reorder_cache(past_key_values, beam_idx):
1519
+ reordered_past = ()
1520
+ for layer_past in past_key_values:
1521
+ reordered_past += (
1522
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
1523
+ )
1524
+ return reordered_past
1525
+
1526
+
1527
+ @add_start_docstrings(
1528
+ """
1529
+ The EXAONE Model transformer with a sequence classification head on top (linear layer).
1530
+
1531
+ :class:`~transformers.ExaoneForSequenceClassification` uses the last token in order to do the classification, as
1532
+ other causal models (e.g. GPT-1) do.
1533
+
1534
+ Since it does classification on the last token, it requires to know the position of the last token. If a
1535
+ :obj:`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each
1536
+ row. If no :obj:`pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot
1537
+ guess the padding tokens when :obj:`inputs_embeds` are passed instead of :obj:`input_ids`, it does the same (take
1538
+ the last value in each row of the batch).
1539
+ """,
1540
+ EXAONE_START_DOCSTRING,
1541
+ )
1542
+ class ExaoneForSequenceClassification(ExaonePreTrainedModel):
1543
+ _keys_to_ignore_on_load_missing = ["lm_head.weight"]
1544
+ def __init__(self, config):
1545
+ super().__init__(config)
1546
+ self.num_labels = config.num_labels
1547
+ self.transformer = ExaoneModel(config)
1548
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
1549
+
1550
+ # Initialize weights and apply final processing
1551
+ self.post_init()
1552
+
1553
+ @add_start_docstrings_to_model_forward(EXAONE_INPUTS_DOCSTRING)
1554
+ @add_code_sample_docstrings(
1555
+ checkpoint=_CHECKPOINT_FOR_DOC,
1556
+ output_type=SequenceClassifierOutputWithPast,
1557
+ config_class=_CONFIG_FOR_DOC,
1558
+ )
1559
+ def forward(
1560
+ self,
1561
+ input_ids: Optional[torch.Tensor] = None,
1562
+ attention_mask: Optional[torch.Tensor] = None,
1563
+ position_ids: Optional[torch.Tensor] = None,
1564
+ past_key_values: Optional[Cache] = None,
1565
+ inputs_embeds: Optional[torch.Tensor] = None,
1566
+ labels: Optional[torch.Tensor] = None,
1567
+ use_cache: Optional[bool] = None,
1568
+ output_attentions: Optional[bool] = None,
1569
+ output_hidden_states: Optional[bool] = None,
1570
+ return_dict: Optional[bool] = None,
1571
+ ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutputWithPast]:
1572
+ r"""
1573
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1574
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1575
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1576
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1577
+ """
1578
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1579
+
1580
+ transformer_outputs = self.transformer(
1581
+ input_ids,
1582
+ attention_mask=attention_mask,
1583
+ position_ids=position_ids,
1584
+ past_key_values=past_key_values,
1585
+ inputs_embeds=inputs_embeds,
1586
+ use_cache=use_cache,
1587
+ output_attentions=output_attentions,
1588
+ output_hidden_states=output_hidden_states,
1589
+ return_dict=return_dict,
1590
+ )
1591
+ hidden_states = transformer_outputs[0]
1592
+ logits = self.score(hidden_states)
1593
+
1594
+ if input_ids is not None:
1595
+ batch_size, sequence_length = input_ids.shape[:2]
1596
+ else:
1597
+ batch_size, sequence_length = inputs_embeds.shape[:2]
1598
+
1599
+ if self.config.pad_token_id is None and batch_size != 1:
1600
+ raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
1601
+ if self.config.pad_token_id is None:
1602
+ sequence_lengths = -1
1603
+ else:
1604
+ if input_ids is not None:
1605
+ # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
1606
+ sequence_lengths = torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1
1607
+ sequence_lengths = sequence_lengths % input_ids.shape[-1]
1608
+ sequence_lengths = sequence_lengths.to(logits.device)
1609
+ else:
1610
+ sequence_lengths = -1
1611
+ logger.warning(
1612
+ f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
1613
+ "unexpected if using padding tokens in conjunction with `inputs_embeds.`"
1614
+ )
1615
+
1616
+ pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
1617
+
1618
+ loss = None
1619
+ if labels is not None:
1620
+ labels = labels.to(logits.device)
1621
+ if self.config.problem_type is None:
1622
+ if self.num_labels == 1:
1623
+ self.config.problem_type = "regression"
1624
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
1625
+ self.config.problem_type = "single_label_classification"
1626
+ else:
1627
+ self.config.problem_type = "multi_label_classification"
1628
+
1629
+ if self.config.problem_type == "regression":
1630
+ loss_fct = MSELoss()
1631
+ if self.num_labels == 1:
1632
+ loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
1633
+ else:
1634
+ loss = loss_fct(pooled_logits, labels)
1635
+ elif self.config.problem_type == "single_label_classification":
1636
+ loss_fct = CrossEntropyLoss()
1637
+ loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
1638
+ elif self.config.problem_type == "multi_label_classification":
1639
+ loss_fct = BCEWithLogitsLoss()
1640
+ loss = loss_fct(pooled_logits, labels)
1641
+ if not return_dict:
1642
+ output = (pooled_logits,) + transformer_outputs[1:]
1643
+ return ((loss,) + output) if loss is not None else output
1644
+
1645
+ return SequenceClassifierOutputWithPast(
1646
+ loss=loss,
1647
+ logits=pooled_logits,
1648
+ past_key_values=transformer_outputs.past_key_values,
1649
+ hidden_states=transformer_outputs.hidden_states,
1650
+ attentions=transformer_outputs.attentions,
1651
+ )
1652
+
1653
+
1654
+ @add_start_docstrings(
1655
+ """
1656
+ The EXAONE Model transformer with a span classification head on top for extractive question-answering tasks like
1657
+ SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
1658
+ """,
1659
+ EXAONE_START_DOCSTRING,
1660
+ )
1661
+ class ExaoneForQuestionAnswering(ExaonePreTrainedModel):
1662
+ _keys_to_ignore_on_load_missing = ["lm_head.weight"]
1663
+
1664
+ def __init__(self, config):
1665
+ super().__init__(config)
1666
+ self.num_labels = config.num_labels
1667
+ self.transformer = ExaoneModel(config)
1668
+ self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
1669
+
1670
+ # Model parallel
1671
+ self.model_parallel = False
1672
+ self.device_map = None
1673
+
1674
+ # Initialize weights and apply final processing
1675
+ self.post_init()
1676
+
1677
+ def forward(
1678
+ self,
1679
+ input_ids: Optional[torch.LongTensor] = None,
1680
+ attention_mask: Optional[torch.FloatTensor] = None,
1681
+ position_ids: Optional[torch.LongTensor] = None,
1682
+ past_key_values: Optional[Cache] = None,
1683
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1684
+ start_positions: Optional[torch.LongTensor] = None,
1685
+ end_positions: Optional[torch.LongTensor] = None,
1686
+ output_attentions: Optional[bool] = None,
1687
+ output_hidden_states: Optional[bool] = None,
1688
+ return_dict: Optional[bool] = None,
1689
+ ) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]:
1690
+ r"""
1691
+ start_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
1692
+ Labels for position (index) of the start of the labelled span for computing the token classification loss.
1693
+ Positions are clamped to the length of the sequence (:obj:`sequence_length`). Position outside of the
1694
+ sequence are not taken into account for computing the loss.
1695
+ end_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
1696
+ Labels for position (index) of the end of the labelled span for computing the token classification loss.
1697
+ Positions are clamped to the length of the sequence (:obj:`sequence_length`). Position outside of the
1698
+ sequence are not taken into account for computing the loss.
1699
+ """
1700
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1701
+
1702
+ outputs = self.transformer(
1703
+ input_ids,
1704
+ attention_mask=attention_mask,
1705
+ position_ids=position_ids,
1706
+ past_key_values=past_key_values,
1707
+ inputs_embeds=inputs_embeds,
1708
+ output_attentions=output_attentions,
1709
+ output_hidden_states=output_hidden_states,
1710
+ return_dict=return_dict,
1711
+ )
1712
+
1713
+ sequence_output = outputs[0]
1714
+
1715
+ logits = self.qa_outputs(sequence_output)
1716
+ start_logits, end_logits = logits.split(1, dim=-1)
1717
+ start_logits = start_logits.squeeze(-1).contiguous()
1718
+ end_logits = end_logits.squeeze(-1).contiguous()
1719
+
1720
+ total_loss = None
1721
+ if start_positions is not None and end_positions is not None:
1722
+ # If we are on multi-GPU, split add a dimension
1723
+ if len(start_positions.size()) > 1:
1724
+ start_positions = start_positions.squeeze(-1).to(start_logits.device)
1725
+ if len(end_positions.size()) > 1:
1726
+ end_positions = end_positions.squeeze(-1).to(end_logits.device)
1727
+ # sometimes the start/end positions are outside our model inputs, we ignore these terms
1728
+ ignored_index = start_logits.size(1)
1729
+ start_positions = start_positions.clamp(0, ignored_index)
1730
+ end_positions = end_positions.clamp(0, ignored_index)
1731
+
1732
+ loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
1733
+ start_loss = loss_fct(start_logits, start_positions)
1734
+ end_loss = loss_fct(end_logits, end_positions)
1735
+ total_loss = (start_loss + end_loss) / 2
1736
+
1737
+ if not return_dict:
1738
+ output = (start_logits, end_logits) + outputs[2:]
1739
+ return ((total_loss,) + output) if total_loss is not None else output
1740
+
1741
+ return QuestionAnsweringModelOutput(
1742
+ loss=total_loss,
1743
+ start_logits=start_logits,
1744
+ end_logits=end_logits,
1745
+ hidden_states=outputs.hidden_states,
1746
+ attentions=outputs.attentions,
1747
+ )
quantize_config.json ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bits": 4,
3
+ "dynamic": null,
4
+ "group_size": 32,
5
+ "desc_act": true,
6
+ "static_groups": false,
7
+ "sym": false,
8
+ "lm_head": false,
9
+ "damp_percent": 0.0025,
10
+ "damp_auto_increment": 0.0015,
11
+ "true_sequential": true,
12
+ "model_name_or_path": "",
13
+ "model_file_base_name": "model",
14
+ "quant_method": "gptq",
15
+ "checkpoint_format": "gptq",
16
+ "meta": {
17
+ "quantizer": "gptqmodel:0.9.10-dev0"
18
+ }
19
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "[BOS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "[|endofturn|]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "[UNK]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,3221 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "0": {
5
+ "content": "[PAD]",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "1": {
13
+ "content": "[BOS]",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "2": {
21
+ "content": "[EOS]",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "3": {
29
+ "content": "[UNK]",
30
+ "lstrip": false,
31
+ "normalized": false,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "4": {
37
+ "content": " ",
38
+ "lstrip": false,
39
+ "normalized": false,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": false
43
+ },
44
+ "5": {
45
+ "content": " ",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false,
50
+ "special": false
51
+ },
52
+ "6": {
53
+ "content": " ",
54
+ "lstrip": false,
55
+ "normalized": false,
56
+ "rstrip": false,
57
+ "single_word": false,
58
+ "special": false
59
+ },
60
+ "7": {
61
+ "content": " ",
62
+ "lstrip": false,
63
+ "normalized": false,
64
+ "rstrip": false,
65
+ "single_word": false,
66
+ "special": false
67
+ },
68
+ "8": {
69
+ "content": " ",
70
+ "lstrip": false,
71
+ "normalized": false,
72
+ "rstrip": false,
73
+ "single_word": false,
74
+ "special": false
75
+ },
76
+ "9": {
77
+ "content": " ",
78
+ "lstrip": false,
79
+ "normalized": false,
80
+ "rstrip": false,
81
+ "single_word": false,
82
+ "special": false
83
+ },
84
+ "10": {
85
+ "content": " ",
86
+ "lstrip": false,
87
+ "normalized": false,
88
+ "rstrip": false,
89
+ "single_word": false,
90
+ "special": false
91
+ },
92
+ "11": {
93
+ "content": " ",
94
+ "lstrip": false,
95
+ "normalized": false,
96
+ "rstrip": false,
97
+ "single_word": false,
98
+ "special": false
99
+ },
100
+ "12": {
101
+ "content": " ",
102
+ "lstrip": false,
103
+ "normalized": false,
104
+ "rstrip": false,
105
+ "single_word": false,
106
+ "special": false
107
+ },
108
+ "13": {
109
+ "content": " ",
110
+ "lstrip": false,
111
+ "normalized": false,
112
+ "rstrip": false,
113
+ "single_word": false,
114
+ "special": false
115
+ },
116
+ "14": {
117
+ "content": " ",
118
+ "lstrip": false,
119
+ "normalized": false,
120
+ "rstrip": false,
121
+ "single_word": false,
122
+ "special": false
123
+ },
124
+ "15": {
125
+ "content": " ",
126
+ "lstrip": false,
127
+ "normalized": false,
128
+ "rstrip": false,
129
+ "single_word": false,
130
+ "special": false
131
+ },
132
+ "16": {
133
+ "content": " ",
134
+ "lstrip": false,
135
+ "normalized": false,
136
+ "rstrip": false,
137
+ "single_word": false,
138
+ "special": false
139
+ },
140
+ "17": {
141
+ "content": " ",
142
+ "lstrip": false,
143
+ "normalized": false,
144
+ "rstrip": false,
145
+ "single_word": false,
146
+ "special": false
147
+ },
148
+ "18": {
149
+ "content": " ",
150
+ "lstrip": false,
151
+ "normalized": false,
152
+ "rstrip": false,
153
+ "single_word": false,
154
+ "special": false
155
+ },
156
+ "19": {
157
+ "content": " ",
158
+ "lstrip": false,
159
+ "normalized": false,
160
+ "rstrip": false,
161
+ "single_word": false,
162
+ "special": false
163
+ },
164
+ "20": {
165
+ "content": " ",
166
+ "lstrip": false,
167
+ "normalized": false,
168
+ "rstrip": false,
169
+ "single_word": false,
170
+ "special": false
171
+ },
172
+ "21": {
173
+ "content": " ",
174
+ "lstrip": false,
175
+ "normalized": false,
176
+ "rstrip": false,
177
+ "single_word": false,
178
+ "special": false
179
+ },
180
+ "22": {
181
+ "content": " ",
182
+ "lstrip": false,
183
+ "normalized": false,
184
+ "rstrip": false,
185
+ "single_word": false,
186
+ "special": false
187
+ },
188
+ "23": {
189
+ "content": " ",
190
+ "lstrip": false,
191
+ "normalized": false,
192
+ "rstrip": false,
193
+ "single_word": false,
194
+ "special": false
195
+ },
196
+ "24": {
197
+ "content": " ",
198
+ "lstrip": false,
199
+ "normalized": false,
200
+ "rstrip": false,
201
+ "single_word": false,
202
+ "special": false
203
+ },
204
+ "25": {
205
+ "content": " ",
206
+ "lstrip": false,
207
+ "normalized": false,
208
+ "rstrip": false,
209
+ "single_word": false,
210
+ "special": false
211
+ },
212
+ "26": {
213
+ "content": " ",
214
+ "lstrip": false,
215
+ "normalized": false,
216
+ "rstrip": false,
217
+ "single_word": false,
218
+ "special": false
219
+ },
220
+ "27": {
221
+ "content": " ",
222
+ "lstrip": false,
223
+ "normalized": false,
224
+ "rstrip": false,
225
+ "single_word": false,
226
+ "special": false
227
+ },
228
+ "28": {
229
+ "content": " ",
230
+ "lstrip": false,
231
+ "normalized": false,
232
+ "rstrip": false,
233
+ "single_word": false,
234
+ "special": false
235
+ },
236
+ "29": {
237
+ "content": " ",
238
+ "lstrip": false,
239
+ "normalized": false,
240
+ "rstrip": false,
241
+ "single_word": false,
242
+ "special": false
243
+ },
244
+ "30": {
245
+ "content": " ",
246
+ "lstrip": false,
247
+ "normalized": false,
248
+ "rstrip": false,
249
+ "single_word": false,
250
+ "special": false
251
+ },
252
+ "31": {
253
+ "content": " ",
254
+ "lstrip": false,
255
+ "normalized": false,
256
+ "rstrip": false,
257
+ "single_word": false,
258
+ "special": false
259
+ },
260
+ "32": {
261
+ "content": " ",
262
+ "lstrip": false,
263
+ "normalized": false,
264
+ "rstrip": false,
265
+ "single_word": false,
266
+ "special": false
267
+ },
268
+ "33": {
269
+ "content": " ",
270
+ "lstrip": false,
271
+ "normalized": false,
272
+ "rstrip": false,
273
+ "single_word": false,
274
+ "special": false
275
+ },
276
+ "34": {
277
+ "content": "\t\t\t\t\t\t\t\t\t",
278
+ "lstrip": false,
279
+ "normalized": false,
280
+ "rstrip": false,
281
+ "single_word": false,
282
+ "special": false
283
+ },
284
+ "35": {
285
+ "content": "\t\t\t\t\t\t\t\t",
286
+ "lstrip": false,
287
+ "normalized": false,
288
+ "rstrip": false,
289
+ "single_word": false,
290
+ "special": false
291
+ },
292
+ "36": {
293
+ "content": "\t\t\t\t\t\t\t",
294
+ "lstrip": false,
295
+ "normalized": false,
296
+ "rstrip": false,
297
+ "single_word": false,
298
+ "special": false
299
+ },
300
+ "37": {
301
+ "content": "\t\t\t\t\t\t",
302
+ "lstrip": false,
303
+ "normalized": false,
304
+ "rstrip": false,
305
+ "single_word": false,
306
+ "special": false
307
+ },
308
+ "38": {
309
+ "content": "\t\t\t\t\t",
310
+ "lstrip": false,
311
+ "normalized": false,
312
+ "rstrip": false,
313
+ "single_word": false,
314
+ "special": false
315
+ },
316
+ "39": {
317
+ "content": "\t\t\t\t",
318
+ "lstrip": false,
319
+ "normalized": false,
320
+ "rstrip": false,
321
+ "single_word": false,
322
+ "special": false
323
+ },
324
+ "40": {
325
+ "content": "\t\t\t",
326
+ "lstrip": false,
327
+ "normalized": false,
328
+ "rstrip": false,
329
+ "single_word": false,
330
+ "special": false
331
+ },
332
+ "41": {
333
+ "content": "\t\t",
334
+ "lstrip": false,
335
+ "normalized": false,
336
+ "rstrip": false,
337
+ "single_word": false,
338
+ "special": false
339
+ },
340
+ "42": {
341
+ "content": "<|endoftext|>",
342
+ "lstrip": false,
343
+ "normalized": false,
344
+ "rstrip": false,
345
+ "single_word": false,
346
+ "special": true
347
+ },
348
+ "43": {
349
+ "content": "<|c|>",
350
+ "lstrip": false,
351
+ "normalized": false,
352
+ "rstrip": false,
353
+ "single_word": false,
354
+ "special": true
355
+ },
356
+ "44": {
357
+ "content": "<|c++|>",
358
+ "lstrip": false,
359
+ "normalized": false,
360
+ "rstrip": false,
361
+ "single_word": false,
362
+ "special": true
363
+ },
364
+ "45": {
365
+ "content": "<|python|>",
366
+ "lstrip": false,
367
+ "normalized": false,
368
+ "rstrip": false,
369
+ "single_word": false,
370
+ "special": true
371
+ },
372
+ "46": {
373
+ "content": "<|javascript|>",
374
+ "lstrip": false,
375
+ "normalized": false,
376
+ "rstrip": false,
377
+ "single_word": false,
378
+ "special": true
379
+ },
380
+ "47": {
381
+ "content": "<|markdown|>",
382
+ "lstrip": false,
383
+ "normalized": false,
384
+ "rstrip": false,
385
+ "single_word": false,
386
+ "special": true
387
+ },
388
+ "48": {
389
+ "content": "<|html|>",
390
+ "lstrip": false,
391
+ "normalized": false,
392
+ "rstrip": false,
393
+ "single_word": false,
394
+ "special": true
395
+ },
396
+ "49": {
397
+ "content": "<|css|>",
398
+ "lstrip": false,
399
+ "normalized": false,
400
+ "rstrip": false,
401
+ "single_word": false,
402
+ "special": true
403
+ },
404
+ "50": {
405
+ "content": "<|vue|>",
406
+ "lstrip": false,
407
+ "normalized": false,
408
+ "rstrip": false,
409
+ "single_word": false,
410
+ "special": true
411
+ },
412
+ "51": {
413
+ "content": "<|java|>",
414
+ "lstrip": false,
415
+ "normalized": false,
416
+ "rstrip": false,
417
+ "single_word": false,
418
+ "special": true
419
+ },
420
+ "52": {
421
+ "content": "PI:URL",
422
+ "lstrip": false,
423
+ "normalized": false,
424
+ "rstrip": false,
425
+ "single_word": false,
426
+ "special": true
427
+ },
428
+ "53": {
429
+ "content": "PI:EMAIL",
430
+ "lstrip": false,
431
+ "normalized": false,
432
+ "rstrip": false,
433
+ "single_word": false,
434
+ "special": true
435
+ },
436
+ "54": {
437
+ "content": "PI:ACCOUNT_NUM",
438
+ "lstrip": false,
439
+ "normalized": false,
440
+ "rstrip": false,
441
+ "single_word": false,
442
+ "special": true
443
+ },
444
+ "55": {
445
+ "content": "PI:PHONE_NUM",
446
+ "lstrip": false,
447
+ "normalized": false,
448
+ "rstrip": false,
449
+ "single_word": false,
450
+ "special": true
451
+ },
452
+ "56": {
453
+ "content": "PI:BUSINESS_NUM",
454
+ "lstrip": false,
455
+ "normalized": false,
456
+ "rstrip": false,
457
+ "single_word": false,
458
+ "special": true
459
+ },
460
+ "57": {
461
+ "content": "PI:ANNON",
462
+ "lstrip": false,
463
+ "normalized": false,
464
+ "rstrip": false,
465
+ "single_word": false,
466
+ "special": true
467
+ },
468
+ "58": {
469
+ "content": "PI:KEY",
470
+ "lstrip": false,
471
+ "normalized": false,
472
+ "rstrip": false,
473
+ "single_word": false,
474
+ "special": true
475
+ },
476
+ "59": {
477
+ "content": "PI:ID",
478
+ "lstrip": false,
479
+ "normalized": false,
480
+ "rstrip": false,
481
+ "single_word": false,
482
+ "special": true
483
+ },
484
+ "60": {
485
+ "content": "PI:IP_ADDRESS",
486
+ "lstrip": false,
487
+ "normalized": false,
488
+ "rstrip": false,
489
+ "single_word": false,
490
+ "special": true
491
+ },
492
+ "61": {
493
+ "content": "PI:USER",
494
+ "lstrip": false,
495
+ "normalized": false,
496
+ "rstrip": false,
497
+ "single_word": false,
498
+ "special": true
499
+ },
500
+ "62": {
501
+ "content": "[unused0]",
502
+ "lstrip": false,
503
+ "normalized": false,
504
+ "rstrip": false,
505
+ "single_word": false,
506
+ "special": true
507
+ },
508
+ "63": {
509
+ "content": "[unused1]",
510
+ "lstrip": false,
511
+ "normalized": false,
512
+ "rstrip": false,
513
+ "single_word": false,
514
+ "special": true
515
+ },
516
+ "64": {
517
+ "content": "[unused2]",
518
+ "lstrip": false,
519
+ "normalized": false,
520
+ "rstrip": false,
521
+ "single_word": false,
522
+ "special": true
523
+ },
524
+ "65": {
525
+ "content": "[unused3]",
526
+ "lstrip": false,
527
+ "normalized": false,
528
+ "rstrip": false,
529
+ "single_word": false,
530
+ "special": true
531
+ },
532
+ "66": {
533
+ "content": "[unused4]",
534
+ "lstrip": false,
535
+ "normalized": false,
536
+ "rstrip": false,
537
+ "single_word": false,
538
+ "special": true
539
+ },
540
+ "67": {
541
+ "content": "[unused5]",
542
+ "lstrip": false,
543
+ "normalized": false,
544
+ "rstrip": false,
545
+ "single_word": false,
546
+ "special": true
547
+ },
548
+ "68": {
549
+ "content": "[unused6]",
550
+ "lstrip": false,
551
+ "normalized": false,
552
+ "rstrip": false,
553
+ "single_word": false,
554
+ "special": true
555
+ },
556
+ "69": {
557
+ "content": "[unused7]",
558
+ "lstrip": false,
559
+ "normalized": false,
560
+ "rstrip": false,
561
+ "single_word": false,
562
+ "special": true
563
+ },
564
+ "70": {
565
+ "content": "[unused8]",
566
+ "lstrip": false,
567
+ "normalized": false,
568
+ "rstrip": false,
569
+ "single_word": false,
570
+ "special": true
571
+ },
572
+ "71": {
573
+ "content": "[unused9]",
574
+ "lstrip": false,
575
+ "normalized": false,
576
+ "rstrip": false,
577
+ "single_word": false,
578
+ "special": true
579
+ },
580
+ "72": {
581
+ "content": "[unused10]",
582
+ "lstrip": false,
583
+ "normalized": false,
584
+ "rstrip": false,
585
+ "single_word": false,
586
+ "special": true
587
+ },
588
+ "73": {
589
+ "content": "[unused11]",
590
+ "lstrip": false,
591
+ "normalized": false,
592
+ "rstrip": false,
593
+ "single_word": false,
594
+ "special": true
595
+ },
596
+ "74": {
597
+ "content": "[unused12]",
598
+ "lstrip": false,
599
+ "normalized": false,
600
+ "rstrip": false,
601
+ "single_word": false,
602
+ "special": true
603
+ },
604
+ "75": {
605
+ "content": "[unused13]",
606
+ "lstrip": false,
607
+ "normalized": false,
608
+ "rstrip": false,
609
+ "single_word": false,
610
+ "special": true
611
+ },
612
+ "76": {
613
+ "content": "[unused14]",
614
+ "lstrip": false,
615
+ "normalized": false,
616
+ "rstrip": false,
617
+ "single_word": false,
618
+ "special": true
619
+ },
620
+ "77": {
621
+ "content": "[unused15]",
622
+ "lstrip": false,
623
+ "normalized": false,
624
+ "rstrip": false,
625
+ "single_word": false,
626
+ "special": true
627
+ },
628
+ "78": {
629
+ "content": "[unused16]",
630
+ "lstrip": false,
631
+ "normalized": false,
632
+ "rstrip": false,
633
+ "single_word": false,
634
+ "special": true
635
+ },
636
+ "79": {
637
+ "content": "[unused17]",
638
+ "lstrip": false,
639
+ "normalized": false,
640
+ "rstrip": false,
641
+ "single_word": false,
642
+ "special": true
643
+ },
644
+ "80": {
645
+ "content": "[unused18]",
646
+ "lstrip": false,
647
+ "normalized": false,
648
+ "rstrip": false,
649
+ "single_word": false,
650
+ "special": true
651
+ },
652
+ "81": {
653
+ "content": "[unused19]",
654
+ "lstrip": false,
655
+ "normalized": false,
656
+ "rstrip": false,
657
+ "single_word": false,
658
+ "special": true
659
+ },
660
+ "82": {
661
+ "content": "[unused20]",
662
+ "lstrip": false,
663
+ "normalized": false,
664
+ "rstrip": false,
665
+ "single_word": false,
666
+ "special": true
667
+ },
668
+ "83": {
669
+ "content": "[unused21]",
670
+ "lstrip": false,
671
+ "normalized": false,
672
+ "rstrip": false,
673
+ "single_word": false,
674
+ "special": true
675
+ },
676
+ "84": {
677
+ "content": "[unused22]",
678
+ "lstrip": false,
679
+ "normalized": false,
680
+ "rstrip": false,
681
+ "single_word": false,
682
+ "special": true
683
+ },
684
+ "85": {
685
+ "content": "[unused23]",
686
+ "lstrip": false,
687
+ "normalized": false,
688
+ "rstrip": false,
689
+ "single_word": false,
690
+ "special": true
691
+ },
692
+ "86": {
693
+ "content": "[unused24]",
694
+ "lstrip": false,
695
+ "normalized": false,
696
+ "rstrip": false,
697
+ "single_word": false,
698
+ "special": true
699
+ },
700
+ "87": {
701
+ "content": "[unused25]",
702
+ "lstrip": false,
703
+ "normalized": false,
704
+ "rstrip": false,
705
+ "single_word": false,
706
+ "special": true
707
+ },
708
+ "88": {
709
+ "content": "[unused26]",
710
+ "lstrip": false,
711
+ "normalized": false,
712
+ "rstrip": false,
713
+ "single_word": false,
714
+ "special": true
715
+ },
716
+ "89": {
717
+ "content": "[unused27]",
718
+ "lstrip": false,
719
+ "normalized": false,
720
+ "rstrip": false,
721
+ "single_word": false,
722
+ "special": true
723
+ },
724
+ "90": {
725
+ "content": "[unused28]",
726
+ "lstrip": false,
727
+ "normalized": false,
728
+ "rstrip": false,
729
+ "single_word": false,
730
+ "special": true
731
+ },
732
+ "91": {
733
+ "content": "[unused29]",
734
+ "lstrip": false,
735
+ "normalized": false,
736
+ "rstrip": false,
737
+ "single_word": false,
738
+ "special": true
739
+ },
740
+ "92": {
741
+ "content": "[unused30]",
742
+ "lstrip": false,
743
+ "normalized": false,
744
+ "rstrip": false,
745
+ "single_word": false,
746
+ "special": true
747
+ },
748
+ "93": {
749
+ "content": "[unused31]",
750
+ "lstrip": false,
751
+ "normalized": false,
752
+ "rstrip": false,
753
+ "single_word": false,
754
+ "special": true
755
+ },
756
+ "94": {
757
+ "content": "[unused32]",
758
+ "lstrip": false,
759
+ "normalized": false,
760
+ "rstrip": false,
761
+ "single_word": false,
762
+ "special": true
763
+ },
764
+ "95": {
765
+ "content": "[unused33]",
766
+ "lstrip": false,
767
+ "normalized": false,
768
+ "rstrip": false,
769
+ "single_word": false,
770
+ "special": true
771
+ },
772
+ "96": {
773
+ "content": "[unused34]",
774
+ "lstrip": false,
775
+ "normalized": false,
776
+ "rstrip": false,
777
+ "single_word": false,
778
+ "special": true
779
+ },
780
+ "97": {
781
+ "content": "[unused35]",
782
+ "lstrip": false,
783
+ "normalized": false,
784
+ "rstrip": false,
785
+ "single_word": false,
786
+ "special": true
787
+ },
788
+ "98": {
789
+ "content": "[unused36]",
790
+ "lstrip": false,
791
+ "normalized": false,
792
+ "rstrip": false,
793
+ "single_word": false,
794
+ "special": true
795
+ },
796
+ "99": {
797
+ "content": "[unused37]",
798
+ "lstrip": false,
799
+ "normalized": false,
800
+ "rstrip": false,
801
+ "single_word": false,
802
+ "special": true
803
+ },
804
+ "100": {
805
+ "content": "[unused38]",
806
+ "lstrip": false,
807
+ "normalized": false,
808
+ "rstrip": false,
809
+ "single_word": false,
810
+ "special": true
811
+ },
812
+ "101": {
813
+ "content": "[unused39]",
814
+ "lstrip": false,
815
+ "normalized": false,
816
+ "rstrip": false,
817
+ "single_word": false,
818
+ "special": true
819
+ },
820
+ "102": {
821
+ "content": "[unused40]",
822
+ "lstrip": false,
823
+ "normalized": false,
824
+ "rstrip": false,
825
+ "single_word": false,
826
+ "special": true
827
+ },
828
+ "103": {
829
+ "content": "[unused41]",
830
+ "lstrip": false,
831
+ "normalized": false,
832
+ "rstrip": false,
833
+ "single_word": false,
834
+ "special": true
835
+ },
836
+ "104": {
837
+ "content": "[unused42]",
838
+ "lstrip": false,
839
+ "normalized": false,
840
+ "rstrip": false,
841
+ "single_word": false,
842
+ "special": true
843
+ },
844
+ "105": {
845
+ "content": "[unused43]",
846
+ "lstrip": false,
847
+ "normalized": false,
848
+ "rstrip": false,
849
+ "single_word": false,
850
+ "special": true
851
+ },
852
+ "106": {
853
+ "content": "[unused44]",
854
+ "lstrip": false,
855
+ "normalized": false,
856
+ "rstrip": false,
857
+ "single_word": false,
858
+ "special": true
859
+ },
860
+ "107": {
861
+ "content": "[unused45]",
862
+ "lstrip": false,
863
+ "normalized": false,
864
+ "rstrip": false,
865
+ "single_word": false,
866
+ "special": true
867
+ },
868
+ "108": {
869
+ "content": "[unused46]",
870
+ "lstrip": false,
871
+ "normalized": false,
872
+ "rstrip": false,
873
+ "single_word": false,
874
+ "special": true
875
+ },
876
+ "109": {
877
+ "content": "[unused47]",
878
+ "lstrip": false,
879
+ "normalized": false,
880
+ "rstrip": false,
881
+ "single_word": false,
882
+ "special": true
883
+ },
884
+ "110": {
885
+ "content": "[unused48]",
886
+ "lstrip": false,
887
+ "normalized": false,
888
+ "rstrip": false,
889
+ "single_word": false,
890
+ "special": true
891
+ },
892
+ "111": {
893
+ "content": "[unused49]",
894
+ "lstrip": false,
895
+ "normalized": false,
896
+ "rstrip": false,
897
+ "single_word": false,
898
+ "special": true
899
+ },
900
+ "112": {
901
+ "content": "[unused50]",
902
+ "lstrip": false,
903
+ "normalized": false,
904
+ "rstrip": false,
905
+ "single_word": false,
906
+ "special": true
907
+ },
908
+ "113": {
909
+ "content": "[unused51]",
910
+ "lstrip": false,
911
+ "normalized": false,
912
+ "rstrip": false,
913
+ "single_word": false,
914
+ "special": true
915
+ },
916
+ "114": {
917
+ "content": "[unused52]",
918
+ "lstrip": false,
919
+ "normalized": false,
920
+ "rstrip": false,
921
+ "single_word": false,
922
+ "special": true
923
+ },
924
+ "115": {
925
+ "content": "[unused53]",
926
+ "lstrip": false,
927
+ "normalized": false,
928
+ "rstrip": false,
929
+ "single_word": false,
930
+ "special": true
931
+ },
932
+ "116": {
933
+ "content": "[unused54]",
934
+ "lstrip": false,
935
+ "normalized": false,
936
+ "rstrip": false,
937
+ "single_word": false,
938
+ "special": true
939
+ },
940
+ "117": {
941
+ "content": "[unused55]",
942
+ "lstrip": false,
943
+ "normalized": false,
944
+ "rstrip": false,
945
+ "single_word": false,
946
+ "special": true
947
+ },
948
+ "118": {
949
+ "content": "[unused56]",
950
+ "lstrip": false,
951
+ "normalized": false,
952
+ "rstrip": false,
953
+ "single_word": false,
954
+ "special": true
955
+ },
956
+ "119": {
957
+ "content": "[unused57]",
958
+ "lstrip": false,
959
+ "normalized": false,
960
+ "rstrip": false,
961
+ "single_word": false,
962
+ "special": true
963
+ },
964
+ "120": {
965
+ "content": "[unused58]",
966
+ "lstrip": false,
967
+ "normalized": false,
968
+ "rstrip": false,
969
+ "single_word": false,
970
+ "special": true
971
+ },
972
+ "121": {
973
+ "content": "[unused59]",
974
+ "lstrip": false,
975
+ "normalized": false,
976
+ "rstrip": false,
977
+ "single_word": false,
978
+ "special": true
979
+ },
980
+ "122": {
981
+ "content": "[unused60]",
982
+ "lstrip": false,
983
+ "normalized": false,
984
+ "rstrip": false,
985
+ "single_word": false,
986
+ "special": true
987
+ },
988
+ "123": {
989
+ "content": "[unused61]",
990
+ "lstrip": false,
991
+ "normalized": false,
992
+ "rstrip": false,
993
+ "single_word": false,
994
+ "special": true
995
+ },
996
+ "124": {
997
+ "content": "[unused62]",
998
+ "lstrip": false,
999
+ "normalized": false,
1000
+ "rstrip": false,
1001
+ "single_word": false,
1002
+ "special": true
1003
+ },
1004
+ "125": {
1005
+ "content": "[unused63]",
1006
+ "lstrip": false,
1007
+ "normalized": false,
1008
+ "rstrip": false,
1009
+ "single_word": false,
1010
+ "special": true
1011
+ },
1012
+ "126": {
1013
+ "content": "[unused64]",
1014
+ "lstrip": false,
1015
+ "normalized": false,
1016
+ "rstrip": false,
1017
+ "single_word": false,
1018
+ "special": true
1019
+ },
1020
+ "127": {
1021
+ "content": "[unused65]",
1022
+ "lstrip": false,
1023
+ "normalized": false,
1024
+ "rstrip": false,
1025
+ "single_word": false,
1026
+ "special": true
1027
+ },
1028
+ "128": {
1029
+ "content": "[unused66]",
1030
+ "lstrip": false,
1031
+ "normalized": false,
1032
+ "rstrip": false,
1033
+ "single_word": false,
1034
+ "special": true
1035
+ },
1036
+ "129": {
1037
+ "content": "[unused67]",
1038
+ "lstrip": false,
1039
+ "normalized": false,
1040
+ "rstrip": false,
1041
+ "single_word": false,
1042
+ "special": true
1043
+ },
1044
+ "130": {
1045
+ "content": "[unused68]",
1046
+ "lstrip": false,
1047
+ "normalized": false,
1048
+ "rstrip": false,
1049
+ "single_word": false,
1050
+ "special": true
1051
+ },
1052
+ "131": {
1053
+ "content": "[unused69]",
1054
+ "lstrip": false,
1055
+ "normalized": false,
1056
+ "rstrip": false,
1057
+ "single_word": false,
1058
+ "special": true
1059
+ },
1060
+ "132": {
1061
+ "content": "[unused70]",
1062
+ "lstrip": false,
1063
+ "normalized": false,
1064
+ "rstrip": false,
1065
+ "single_word": false,
1066
+ "special": true
1067
+ },
1068
+ "133": {
1069
+ "content": "[unused71]",
1070
+ "lstrip": false,
1071
+ "normalized": false,
1072
+ "rstrip": false,
1073
+ "single_word": false,
1074
+ "special": true
1075
+ },
1076
+ "134": {
1077
+ "content": "[unused72]",
1078
+ "lstrip": false,
1079
+ "normalized": false,
1080
+ "rstrip": false,
1081
+ "single_word": false,
1082
+ "special": true
1083
+ },
1084
+ "135": {
1085
+ "content": "[unused73]",
1086
+ "lstrip": false,
1087
+ "normalized": false,
1088
+ "rstrip": false,
1089
+ "single_word": false,
1090
+ "special": true
1091
+ },
1092
+ "136": {
1093
+ "content": "[unused74]",
1094
+ "lstrip": false,
1095
+ "normalized": false,
1096
+ "rstrip": false,
1097
+ "single_word": false,
1098
+ "special": true
1099
+ },
1100
+ "137": {
1101
+ "content": "[unused75]",
1102
+ "lstrip": false,
1103
+ "normalized": false,
1104
+ "rstrip": false,
1105
+ "single_word": false,
1106
+ "special": true
1107
+ },
1108
+ "138": {
1109
+ "content": "[unused76]",
1110
+ "lstrip": false,
1111
+ "normalized": false,
1112
+ "rstrip": false,
1113
+ "single_word": false,
1114
+ "special": true
1115
+ },
1116
+ "139": {
1117
+ "content": "[unused77]",
1118
+ "lstrip": false,
1119
+ "normalized": false,
1120
+ "rstrip": false,
1121
+ "single_word": false,
1122
+ "special": true
1123
+ },
1124
+ "140": {
1125
+ "content": "[unused78]",
1126
+ "lstrip": false,
1127
+ "normalized": false,
1128
+ "rstrip": false,
1129
+ "single_word": false,
1130
+ "special": true
1131
+ },
1132
+ "141": {
1133
+ "content": "[unused79]",
1134
+ "lstrip": false,
1135
+ "normalized": false,
1136
+ "rstrip": false,
1137
+ "single_word": false,
1138
+ "special": true
1139
+ },
1140
+ "142": {
1141
+ "content": "[unused80]",
1142
+ "lstrip": false,
1143
+ "normalized": false,
1144
+ "rstrip": false,
1145
+ "single_word": false,
1146
+ "special": true
1147
+ },
1148
+ "143": {
1149
+ "content": "[unused81]",
1150
+ "lstrip": false,
1151
+ "normalized": false,
1152
+ "rstrip": false,
1153
+ "single_word": false,
1154
+ "special": true
1155
+ },
1156
+ "144": {
1157
+ "content": "[unused82]",
1158
+ "lstrip": false,
1159
+ "normalized": false,
1160
+ "rstrip": false,
1161
+ "single_word": false,
1162
+ "special": true
1163
+ },
1164
+ "145": {
1165
+ "content": "[unused83]",
1166
+ "lstrip": false,
1167
+ "normalized": false,
1168
+ "rstrip": false,
1169
+ "single_word": false,
1170
+ "special": true
1171
+ },
1172
+ "146": {
1173
+ "content": "[unused84]",
1174
+ "lstrip": false,
1175
+ "normalized": false,
1176
+ "rstrip": false,
1177
+ "single_word": false,
1178
+ "special": true
1179
+ },
1180
+ "147": {
1181
+ "content": "[unused85]",
1182
+ "lstrip": false,
1183
+ "normalized": false,
1184
+ "rstrip": false,
1185
+ "single_word": false,
1186
+ "special": true
1187
+ },
1188
+ "148": {
1189
+ "content": "[unused86]",
1190
+ "lstrip": false,
1191
+ "normalized": false,
1192
+ "rstrip": false,
1193
+ "single_word": false,
1194
+ "special": true
1195
+ },
1196
+ "149": {
1197
+ "content": "[unused87]",
1198
+ "lstrip": false,
1199
+ "normalized": false,
1200
+ "rstrip": false,
1201
+ "single_word": false,
1202
+ "special": true
1203
+ },
1204
+ "150": {
1205
+ "content": "[unused88]",
1206
+ "lstrip": false,
1207
+ "normalized": false,
1208
+ "rstrip": false,
1209
+ "single_word": false,
1210
+ "special": true
1211
+ },
1212
+ "151": {
1213
+ "content": "[unused89]",
1214
+ "lstrip": false,
1215
+ "normalized": false,
1216
+ "rstrip": false,
1217
+ "single_word": false,
1218
+ "special": true
1219
+ },
1220
+ "152": {
1221
+ "content": "[unused90]",
1222
+ "lstrip": false,
1223
+ "normalized": false,
1224
+ "rstrip": false,
1225
+ "single_word": false,
1226
+ "special": true
1227
+ },
1228
+ "153": {
1229
+ "content": "[unused91]",
1230
+ "lstrip": false,
1231
+ "normalized": false,
1232
+ "rstrip": false,
1233
+ "single_word": false,
1234
+ "special": true
1235
+ },
1236
+ "154": {
1237
+ "content": "[unused92]",
1238
+ "lstrip": false,
1239
+ "normalized": false,
1240
+ "rstrip": false,
1241
+ "single_word": false,
1242
+ "special": true
1243
+ },
1244
+ "155": {
1245
+ "content": "[unused93]",
1246
+ "lstrip": false,
1247
+ "normalized": false,
1248
+ "rstrip": false,
1249
+ "single_word": false,
1250
+ "special": true
1251
+ },
1252
+ "156": {
1253
+ "content": "[unused94]",
1254
+ "lstrip": false,
1255
+ "normalized": false,
1256
+ "rstrip": false,
1257
+ "single_word": false,
1258
+ "special": true
1259
+ },
1260
+ "157": {
1261
+ "content": "[unused95]",
1262
+ "lstrip": false,
1263
+ "normalized": false,
1264
+ "rstrip": false,
1265
+ "single_word": false,
1266
+ "special": true
1267
+ },
1268
+ "158": {
1269
+ "content": "[unused96]",
1270
+ "lstrip": false,
1271
+ "normalized": false,
1272
+ "rstrip": false,
1273
+ "single_word": false,
1274
+ "special": true
1275
+ },
1276
+ "159": {
1277
+ "content": "[unused97]",
1278
+ "lstrip": false,
1279
+ "normalized": false,
1280
+ "rstrip": false,
1281
+ "single_word": false,
1282
+ "special": true
1283
+ },
1284
+ "160": {
1285
+ "content": "[unused98]",
1286
+ "lstrip": false,
1287
+ "normalized": false,
1288
+ "rstrip": false,
1289
+ "single_word": false,
1290
+ "special": true
1291
+ },
1292
+ "161": {
1293
+ "content": "[unused99]",
1294
+ "lstrip": false,
1295
+ "normalized": false,
1296
+ "rstrip": false,
1297
+ "single_word": false,
1298
+ "special": true
1299
+ },
1300
+ "162": {
1301
+ "content": "[extra_id_0]",
1302
+ "lstrip": false,
1303
+ "normalized": false,
1304
+ "rstrip": false,
1305
+ "single_word": false,
1306
+ "special": true
1307
+ },
1308
+ "163": {
1309
+ "content": "[extra_id_1]",
1310
+ "lstrip": false,
1311
+ "normalized": false,
1312
+ "rstrip": false,
1313
+ "single_word": false,
1314
+ "special": true
1315
+ },
1316
+ "164": {
1317
+ "content": "[extra_id_2]",
1318
+ "lstrip": false,
1319
+ "normalized": false,
1320
+ "rstrip": false,
1321
+ "single_word": false,
1322
+ "special": true
1323
+ },
1324
+ "165": {
1325
+ "content": "[extra_id_3]",
1326
+ "lstrip": false,
1327
+ "normalized": false,
1328
+ "rstrip": false,
1329
+ "single_word": false,
1330
+ "special": true
1331
+ },
1332
+ "166": {
1333
+ "content": "[extra_id_4]",
1334
+ "lstrip": false,
1335
+ "normalized": false,
1336
+ "rstrip": false,
1337
+ "single_word": false,
1338
+ "special": true
1339
+ },
1340
+ "167": {
1341
+ "content": "[extra_id_5]",
1342
+ "lstrip": false,
1343
+ "normalized": false,
1344
+ "rstrip": false,
1345
+ "single_word": false,
1346
+ "special": true
1347
+ },
1348
+ "168": {
1349
+ "content": "[extra_id_6]",
1350
+ "lstrip": false,
1351
+ "normalized": false,
1352
+ "rstrip": false,
1353
+ "single_word": false,
1354
+ "special": true
1355
+ },
1356
+ "169": {
1357
+ "content": "[extra_id_7]",
1358
+ "lstrip": false,
1359
+ "normalized": false,
1360
+ "rstrip": false,
1361
+ "single_word": false,
1362
+ "special": true
1363
+ },
1364
+ "170": {
1365
+ "content": "[extra_id_8]",
1366
+ "lstrip": false,
1367
+ "normalized": false,
1368
+ "rstrip": false,
1369
+ "single_word": false,
1370
+ "special": true
1371
+ },
1372
+ "171": {
1373
+ "content": "[extra_id_9]",
1374
+ "lstrip": false,
1375
+ "normalized": false,
1376
+ "rstrip": false,
1377
+ "single_word": false,
1378
+ "special": true
1379
+ },
1380
+ "172": {
1381
+ "content": "[extra_id_10]",
1382
+ "lstrip": false,
1383
+ "normalized": false,
1384
+ "rstrip": false,
1385
+ "single_word": false,
1386
+ "special": true
1387
+ },
1388
+ "173": {
1389
+ "content": "[extra_id_11]",
1390
+ "lstrip": false,
1391
+ "normalized": false,
1392
+ "rstrip": false,
1393
+ "single_word": false,
1394
+ "special": true
1395
+ },
1396
+ "174": {
1397
+ "content": "[extra_id_12]",
1398
+ "lstrip": false,
1399
+ "normalized": false,
1400
+ "rstrip": false,
1401
+ "single_word": false,
1402
+ "special": true
1403
+ },
1404
+ "175": {
1405
+ "content": "[extra_id_13]",
1406
+ "lstrip": false,
1407
+ "normalized": false,
1408
+ "rstrip": false,
1409
+ "single_word": false,
1410
+ "special": true
1411
+ },
1412
+ "176": {
1413
+ "content": "[extra_id_14]",
1414
+ "lstrip": false,
1415
+ "normalized": false,
1416
+ "rstrip": false,
1417
+ "single_word": false,
1418
+ "special": true
1419
+ },
1420
+ "177": {
1421
+ "content": "[extra_id_15]",
1422
+ "lstrip": false,
1423
+ "normalized": false,
1424
+ "rstrip": false,
1425
+ "single_word": false,
1426
+ "special": true
1427
+ },
1428
+ "178": {
1429
+ "content": "[extra_id_16]",
1430
+ "lstrip": false,
1431
+ "normalized": false,
1432
+ "rstrip": false,
1433
+ "single_word": false,
1434
+ "special": true
1435
+ },
1436
+ "179": {
1437
+ "content": "[extra_id_17]",
1438
+ "lstrip": false,
1439
+ "normalized": false,
1440
+ "rstrip": false,
1441
+ "single_word": false,
1442
+ "special": true
1443
+ },
1444
+ "180": {
1445
+ "content": "[extra_id_18]",
1446
+ "lstrip": false,
1447
+ "normalized": false,
1448
+ "rstrip": false,
1449
+ "single_word": false,
1450
+ "special": true
1451
+ },
1452
+ "181": {
1453
+ "content": "[extra_id_19]",
1454
+ "lstrip": false,
1455
+ "normalized": false,
1456
+ "rstrip": false,
1457
+ "single_word": false,
1458
+ "special": true
1459
+ },
1460
+ "182": {
1461
+ "content": "[extra_id_20]",
1462
+ "lstrip": false,
1463
+ "normalized": false,
1464
+ "rstrip": false,
1465
+ "single_word": false,
1466
+ "special": true
1467
+ },
1468
+ "183": {
1469
+ "content": "[extra_id_21]",
1470
+ "lstrip": false,
1471
+ "normalized": false,
1472
+ "rstrip": false,
1473
+ "single_word": false,
1474
+ "special": true
1475
+ },
1476
+ "184": {
1477
+ "content": "[extra_id_22]",
1478
+ "lstrip": false,
1479
+ "normalized": false,
1480
+ "rstrip": false,
1481
+ "single_word": false,
1482
+ "special": true
1483
+ },
1484
+ "185": {
1485
+ "content": "[extra_id_23]",
1486
+ "lstrip": false,
1487
+ "normalized": false,
1488
+ "rstrip": false,
1489
+ "single_word": false,
1490
+ "special": true
1491
+ },
1492
+ "186": {
1493
+ "content": "[extra_id_24]",
1494
+ "lstrip": false,
1495
+ "normalized": false,
1496
+ "rstrip": false,
1497
+ "single_word": false,
1498
+ "special": true
1499
+ },
1500
+ "187": {
1501
+ "content": "[extra_id_25]",
1502
+ "lstrip": false,
1503
+ "normalized": false,
1504
+ "rstrip": false,
1505
+ "single_word": false,
1506
+ "special": true
1507
+ },
1508
+ "188": {
1509
+ "content": "[extra_id_26]",
1510
+ "lstrip": false,
1511
+ "normalized": false,
1512
+ "rstrip": false,
1513
+ "single_word": false,
1514
+ "special": true
1515
+ },
1516
+ "189": {
1517
+ "content": "[extra_id_27]",
1518
+ "lstrip": false,
1519
+ "normalized": false,
1520
+ "rstrip": false,
1521
+ "single_word": false,
1522
+ "special": true
1523
+ },
1524
+ "190": {
1525
+ "content": "[extra_id_28]",
1526
+ "lstrip": false,
1527
+ "normalized": false,
1528
+ "rstrip": false,
1529
+ "single_word": false,
1530
+ "special": true
1531
+ },
1532
+ "191": {
1533
+ "content": "[extra_id_29]",
1534
+ "lstrip": false,
1535
+ "normalized": false,
1536
+ "rstrip": false,
1537
+ "single_word": false,
1538
+ "special": true
1539
+ },
1540
+ "192": {
1541
+ "content": "[extra_id_30]",
1542
+ "lstrip": false,
1543
+ "normalized": false,
1544
+ "rstrip": false,
1545
+ "single_word": false,
1546
+ "special": true
1547
+ },
1548
+ "193": {
1549
+ "content": "[extra_id_31]",
1550
+ "lstrip": false,
1551
+ "normalized": false,
1552
+ "rstrip": false,
1553
+ "single_word": false,
1554
+ "special": true
1555
+ },
1556
+ "194": {
1557
+ "content": "[extra_id_32]",
1558
+ "lstrip": false,
1559
+ "normalized": false,
1560
+ "rstrip": false,
1561
+ "single_word": false,
1562
+ "special": true
1563
+ },
1564
+ "195": {
1565
+ "content": "[extra_id_33]",
1566
+ "lstrip": false,
1567
+ "normalized": false,
1568
+ "rstrip": false,
1569
+ "single_word": false,
1570
+ "special": true
1571
+ },
1572
+ "196": {
1573
+ "content": "[extra_id_34]",
1574
+ "lstrip": false,
1575
+ "normalized": false,
1576
+ "rstrip": false,
1577
+ "single_word": false,
1578
+ "special": true
1579
+ },
1580
+ "197": {
1581
+ "content": "[extra_id_35]",
1582
+ "lstrip": false,
1583
+ "normalized": false,
1584
+ "rstrip": false,
1585
+ "single_word": false,
1586
+ "special": true
1587
+ },
1588
+ "198": {
1589
+ "content": "[extra_id_36]",
1590
+ "lstrip": false,
1591
+ "normalized": false,
1592
+ "rstrip": false,
1593
+ "single_word": false,
1594
+ "special": true
1595
+ },
1596
+ "199": {
1597
+ "content": "[extra_id_37]",
1598
+ "lstrip": false,
1599
+ "normalized": false,
1600
+ "rstrip": false,
1601
+ "single_word": false,
1602
+ "special": true
1603
+ },
1604
+ "200": {
1605
+ "content": "[extra_id_38]",
1606
+ "lstrip": false,
1607
+ "normalized": false,
1608
+ "rstrip": false,
1609
+ "single_word": false,
1610
+ "special": true
1611
+ },
1612
+ "201": {
1613
+ "content": "[extra_id_39]",
1614
+ "lstrip": false,
1615
+ "normalized": false,
1616
+ "rstrip": false,
1617
+ "single_word": false,
1618
+ "special": true
1619
+ },
1620
+ "202": {
1621
+ "content": "[extra_id_40]",
1622
+ "lstrip": false,
1623
+ "normalized": false,
1624
+ "rstrip": false,
1625
+ "single_word": false,
1626
+ "special": true
1627
+ },
1628
+ "203": {
1629
+ "content": "[extra_id_41]",
1630
+ "lstrip": false,
1631
+ "normalized": false,
1632
+ "rstrip": false,
1633
+ "single_word": false,
1634
+ "special": true
1635
+ },
1636
+ "204": {
1637
+ "content": "[extra_id_42]",
1638
+ "lstrip": false,
1639
+ "normalized": false,
1640
+ "rstrip": false,
1641
+ "single_word": false,
1642
+ "special": true
1643
+ },
1644
+ "205": {
1645
+ "content": "[extra_id_43]",
1646
+ "lstrip": false,
1647
+ "normalized": false,
1648
+ "rstrip": false,
1649
+ "single_word": false,
1650
+ "special": true
1651
+ },
1652
+ "206": {
1653
+ "content": "[extra_id_44]",
1654
+ "lstrip": false,
1655
+ "normalized": false,
1656
+ "rstrip": false,
1657
+ "single_word": false,
1658
+ "special": true
1659
+ },
1660
+ "207": {
1661
+ "content": "[extra_id_45]",
1662
+ "lstrip": false,
1663
+ "normalized": false,
1664
+ "rstrip": false,
1665
+ "single_word": false,
1666
+ "special": true
1667
+ },
1668
+ "208": {
1669
+ "content": "[extra_id_46]",
1670
+ "lstrip": false,
1671
+ "normalized": false,
1672
+ "rstrip": false,
1673
+ "single_word": false,
1674
+ "special": true
1675
+ },
1676
+ "209": {
1677
+ "content": "[extra_id_47]",
1678
+ "lstrip": false,
1679
+ "normalized": false,
1680
+ "rstrip": false,
1681
+ "single_word": false,
1682
+ "special": true
1683
+ },
1684
+ "210": {
1685
+ "content": "[extra_id_48]",
1686
+ "lstrip": false,
1687
+ "normalized": false,
1688
+ "rstrip": false,
1689
+ "single_word": false,
1690
+ "special": true
1691
+ },
1692
+ "211": {
1693
+ "content": "[extra_id_49]",
1694
+ "lstrip": false,
1695
+ "normalized": false,
1696
+ "rstrip": false,
1697
+ "single_word": false,
1698
+ "special": true
1699
+ },
1700
+ "212": {
1701
+ "content": "[extra_id_50]",
1702
+ "lstrip": false,
1703
+ "normalized": false,
1704
+ "rstrip": false,
1705
+ "single_word": false,
1706
+ "special": true
1707
+ },
1708
+ "213": {
1709
+ "content": "[extra_id_51]",
1710
+ "lstrip": false,
1711
+ "normalized": false,
1712
+ "rstrip": false,
1713
+ "single_word": false,
1714
+ "special": true
1715
+ },
1716
+ "214": {
1717
+ "content": "[extra_id_52]",
1718
+ "lstrip": false,
1719
+ "normalized": false,
1720
+ "rstrip": false,
1721
+ "single_word": false,
1722
+ "special": true
1723
+ },
1724
+ "215": {
1725
+ "content": "[extra_id_53]",
1726
+ "lstrip": false,
1727
+ "normalized": false,
1728
+ "rstrip": false,
1729
+ "single_word": false,
1730
+ "special": true
1731
+ },
1732
+ "216": {
1733
+ "content": "[extra_id_54]",
1734
+ "lstrip": false,
1735
+ "normalized": false,
1736
+ "rstrip": false,
1737
+ "single_word": false,
1738
+ "special": true
1739
+ },
1740
+ "217": {
1741
+ "content": "[extra_id_55]",
1742
+ "lstrip": false,
1743
+ "normalized": false,
1744
+ "rstrip": false,
1745
+ "single_word": false,
1746
+ "special": true
1747
+ },
1748
+ "218": {
1749
+ "content": "[extra_id_56]",
1750
+ "lstrip": false,
1751
+ "normalized": false,
1752
+ "rstrip": false,
1753
+ "single_word": false,
1754
+ "special": true
1755
+ },
1756
+ "219": {
1757
+ "content": "[extra_id_57]",
1758
+ "lstrip": false,
1759
+ "normalized": false,
1760
+ "rstrip": false,
1761
+ "single_word": false,
1762
+ "special": true
1763
+ },
1764
+ "220": {
1765
+ "content": "[extra_id_58]",
1766
+ "lstrip": false,
1767
+ "normalized": false,
1768
+ "rstrip": false,
1769
+ "single_word": false,
1770
+ "special": true
1771
+ },
1772
+ "221": {
1773
+ "content": "[extra_id_59]",
1774
+ "lstrip": false,
1775
+ "normalized": false,
1776
+ "rstrip": false,
1777
+ "single_word": false,
1778
+ "special": true
1779
+ },
1780
+ "222": {
1781
+ "content": "[extra_id_60]",
1782
+ "lstrip": false,
1783
+ "normalized": false,
1784
+ "rstrip": false,
1785
+ "single_word": false,
1786
+ "special": true
1787
+ },
1788
+ "223": {
1789
+ "content": "[extra_id_61]",
1790
+ "lstrip": false,
1791
+ "normalized": false,
1792
+ "rstrip": false,
1793
+ "single_word": false,
1794
+ "special": true
1795
+ },
1796
+ "224": {
1797
+ "content": "[extra_id_62]",
1798
+ "lstrip": false,
1799
+ "normalized": false,
1800
+ "rstrip": false,
1801
+ "single_word": false,
1802
+ "special": true
1803
+ },
1804
+ "225": {
1805
+ "content": "[extra_id_63]",
1806
+ "lstrip": false,
1807
+ "normalized": false,
1808
+ "rstrip": false,
1809
+ "single_word": false,
1810
+ "special": true
1811
+ },
1812
+ "226": {
1813
+ "content": "[extra_id_64]",
1814
+ "lstrip": false,
1815
+ "normalized": false,
1816
+ "rstrip": false,
1817
+ "single_word": false,
1818
+ "special": true
1819
+ },
1820
+ "227": {
1821
+ "content": "[extra_id_65]",
1822
+ "lstrip": false,
1823
+ "normalized": false,
1824
+ "rstrip": false,
1825
+ "single_word": false,
1826
+ "special": true
1827
+ },
1828
+ "228": {
1829
+ "content": "[extra_id_66]",
1830
+ "lstrip": false,
1831
+ "normalized": false,
1832
+ "rstrip": false,
1833
+ "single_word": false,
1834
+ "special": true
1835
+ },
1836
+ "229": {
1837
+ "content": "[extra_id_67]",
1838
+ "lstrip": false,
1839
+ "normalized": false,
1840
+ "rstrip": false,
1841
+ "single_word": false,
1842
+ "special": true
1843
+ },
1844
+ "230": {
1845
+ "content": "[extra_id_68]",
1846
+ "lstrip": false,
1847
+ "normalized": false,
1848
+ "rstrip": false,
1849
+ "single_word": false,
1850
+ "special": true
1851
+ },
1852
+ "231": {
1853
+ "content": "[extra_id_69]",
1854
+ "lstrip": false,
1855
+ "normalized": false,
1856
+ "rstrip": false,
1857
+ "single_word": false,
1858
+ "special": true
1859
+ },
1860
+ "232": {
1861
+ "content": "[extra_id_70]",
1862
+ "lstrip": false,
1863
+ "normalized": false,
1864
+ "rstrip": false,
1865
+ "single_word": false,
1866
+ "special": true
1867
+ },
1868
+ "233": {
1869
+ "content": "[extra_id_71]",
1870
+ "lstrip": false,
1871
+ "normalized": false,
1872
+ "rstrip": false,
1873
+ "single_word": false,
1874
+ "special": true
1875
+ },
1876
+ "234": {
1877
+ "content": "[extra_id_72]",
1878
+ "lstrip": false,
1879
+ "normalized": false,
1880
+ "rstrip": false,
1881
+ "single_word": false,
1882
+ "special": true
1883
+ },
1884
+ "235": {
1885
+ "content": "[extra_id_73]",
1886
+ "lstrip": false,
1887
+ "normalized": false,
1888
+ "rstrip": false,
1889
+ "single_word": false,
1890
+ "special": true
1891
+ },
1892
+ "236": {
1893
+ "content": "[extra_id_74]",
1894
+ "lstrip": false,
1895
+ "normalized": false,
1896
+ "rstrip": false,
1897
+ "single_word": false,
1898
+ "special": true
1899
+ },
1900
+ "237": {
1901
+ "content": "[extra_id_75]",
1902
+ "lstrip": false,
1903
+ "normalized": false,
1904
+ "rstrip": false,
1905
+ "single_word": false,
1906
+ "special": true
1907
+ },
1908
+ "238": {
1909
+ "content": "[extra_id_76]",
1910
+ "lstrip": false,
1911
+ "normalized": false,
1912
+ "rstrip": false,
1913
+ "single_word": false,
1914
+ "special": true
1915
+ },
1916
+ "239": {
1917
+ "content": "[extra_id_77]",
1918
+ "lstrip": false,
1919
+ "normalized": false,
1920
+ "rstrip": false,
1921
+ "single_word": false,
1922
+ "special": true
1923
+ },
1924
+ "240": {
1925
+ "content": "[extra_id_78]",
1926
+ "lstrip": false,
1927
+ "normalized": false,
1928
+ "rstrip": false,
1929
+ "single_word": false,
1930
+ "special": true
1931
+ },
1932
+ "241": {
1933
+ "content": "[extra_id_79]",
1934
+ "lstrip": false,
1935
+ "normalized": false,
1936
+ "rstrip": false,
1937
+ "single_word": false,
1938
+ "special": true
1939
+ },
1940
+ "242": {
1941
+ "content": "[extra_id_80]",
1942
+ "lstrip": false,
1943
+ "normalized": false,
1944
+ "rstrip": false,
1945
+ "single_word": false,
1946
+ "special": true
1947
+ },
1948
+ "243": {
1949
+ "content": "[extra_id_81]",
1950
+ "lstrip": false,
1951
+ "normalized": false,
1952
+ "rstrip": false,
1953
+ "single_word": false,
1954
+ "special": true
1955
+ },
1956
+ "244": {
1957
+ "content": "[extra_id_82]",
1958
+ "lstrip": false,
1959
+ "normalized": false,
1960
+ "rstrip": false,
1961
+ "single_word": false,
1962
+ "special": true
1963
+ },
1964
+ "245": {
1965
+ "content": "[extra_id_83]",
1966
+ "lstrip": false,
1967
+ "normalized": false,
1968
+ "rstrip": false,
1969
+ "single_word": false,
1970
+ "special": true
1971
+ },
1972
+ "246": {
1973
+ "content": "[extra_id_84]",
1974
+ "lstrip": false,
1975
+ "normalized": false,
1976
+ "rstrip": false,
1977
+ "single_word": false,
1978
+ "special": true
1979
+ },
1980
+ "247": {
1981
+ "content": "[extra_id_85]",
1982
+ "lstrip": false,
1983
+ "normalized": false,
1984
+ "rstrip": false,
1985
+ "single_word": false,
1986
+ "special": true
1987
+ },
1988
+ "248": {
1989
+ "content": "[extra_id_86]",
1990
+ "lstrip": false,
1991
+ "normalized": false,
1992
+ "rstrip": false,
1993
+ "single_word": false,
1994
+ "special": true
1995
+ },
1996
+ "249": {
1997
+ "content": "[extra_id_87]",
1998
+ "lstrip": false,
1999
+ "normalized": false,
2000
+ "rstrip": false,
2001
+ "single_word": false,
2002
+ "special": true
2003
+ },
2004
+ "250": {
2005
+ "content": "[extra_id_88]",
2006
+ "lstrip": false,
2007
+ "normalized": false,
2008
+ "rstrip": false,
2009
+ "single_word": false,
2010
+ "special": true
2011
+ },
2012
+ "251": {
2013
+ "content": "[extra_id_89]",
2014
+ "lstrip": false,
2015
+ "normalized": false,
2016
+ "rstrip": false,
2017
+ "single_word": false,
2018
+ "special": true
2019
+ },
2020
+ "252": {
2021
+ "content": "[extra_id_90]",
2022
+ "lstrip": false,
2023
+ "normalized": false,
2024
+ "rstrip": false,
2025
+ "single_word": false,
2026
+ "special": true
2027
+ },
2028
+ "253": {
2029
+ "content": "[extra_id_91]",
2030
+ "lstrip": false,
2031
+ "normalized": false,
2032
+ "rstrip": false,
2033
+ "single_word": false,
2034
+ "special": true
2035
+ },
2036
+ "254": {
2037
+ "content": "[extra_id_92]",
2038
+ "lstrip": false,
2039
+ "normalized": false,
2040
+ "rstrip": false,
2041
+ "single_word": false,
2042
+ "special": true
2043
+ },
2044
+ "255": {
2045
+ "content": "[extra_id_93]",
2046
+ "lstrip": false,
2047
+ "normalized": false,
2048
+ "rstrip": false,
2049
+ "single_word": false,
2050
+ "special": true
2051
+ },
2052
+ "256": {
2053
+ "content": "[extra_id_94]",
2054
+ "lstrip": false,
2055
+ "normalized": false,
2056
+ "rstrip": false,
2057
+ "single_word": false,
2058
+ "special": true
2059
+ },
2060
+ "257": {
2061
+ "content": "[extra_id_95]",
2062
+ "lstrip": false,
2063
+ "normalized": false,
2064
+ "rstrip": false,
2065
+ "single_word": false,
2066
+ "special": true
2067
+ },
2068
+ "258": {
2069
+ "content": "[extra_id_96]",
2070
+ "lstrip": false,
2071
+ "normalized": false,
2072
+ "rstrip": false,
2073
+ "single_word": false,
2074
+ "special": true
2075
+ },
2076
+ "259": {
2077
+ "content": "[extra_id_97]",
2078
+ "lstrip": false,
2079
+ "normalized": false,
2080
+ "rstrip": false,
2081
+ "single_word": false,
2082
+ "special": true
2083
+ },
2084
+ "260": {
2085
+ "content": "[extra_id_98]",
2086
+ "lstrip": false,
2087
+ "normalized": false,
2088
+ "rstrip": false,
2089
+ "single_word": false,
2090
+ "special": true
2091
+ },
2092
+ "261": {
2093
+ "content": "[extra_id_99]",
2094
+ "lstrip": false,
2095
+ "normalized": false,
2096
+ "rstrip": false,
2097
+ "single_word": false,
2098
+ "special": true
2099
+ },
2100
+ "262": {
2101
+ "content": "[extra_id_100]",
2102
+ "lstrip": false,
2103
+ "normalized": false,
2104
+ "rstrip": false,
2105
+ "single_word": false,
2106
+ "special": true
2107
+ },
2108
+ "263": {
2109
+ "content": "[extra_id_101]",
2110
+ "lstrip": false,
2111
+ "normalized": false,
2112
+ "rstrip": false,
2113
+ "single_word": false,
2114
+ "special": true
2115
+ },
2116
+ "264": {
2117
+ "content": "[extra_id_102]",
2118
+ "lstrip": false,
2119
+ "normalized": false,
2120
+ "rstrip": false,
2121
+ "single_word": false,
2122
+ "special": true
2123
+ },
2124
+ "265": {
2125
+ "content": "[extra_id_103]",
2126
+ "lstrip": false,
2127
+ "normalized": false,
2128
+ "rstrip": false,
2129
+ "single_word": false,
2130
+ "special": true
2131
+ },
2132
+ "266": {
2133
+ "content": "[extra_id_104]",
2134
+ "lstrip": false,
2135
+ "normalized": false,
2136
+ "rstrip": false,
2137
+ "single_word": false,
2138
+ "special": true
2139
+ },
2140
+ "267": {
2141
+ "content": "[extra_id_105]",
2142
+ "lstrip": false,
2143
+ "normalized": false,
2144
+ "rstrip": false,
2145
+ "single_word": false,
2146
+ "special": true
2147
+ },
2148
+ "268": {
2149
+ "content": "[extra_id_106]",
2150
+ "lstrip": false,
2151
+ "normalized": false,
2152
+ "rstrip": false,
2153
+ "single_word": false,
2154
+ "special": true
2155
+ },
2156
+ "269": {
2157
+ "content": "[extra_id_107]",
2158
+ "lstrip": false,
2159
+ "normalized": false,
2160
+ "rstrip": false,
2161
+ "single_word": false,
2162
+ "special": true
2163
+ },
2164
+ "270": {
2165
+ "content": "[extra_id_108]",
2166
+ "lstrip": false,
2167
+ "normalized": false,
2168
+ "rstrip": false,
2169
+ "single_word": false,
2170
+ "special": true
2171
+ },
2172
+ "271": {
2173
+ "content": "[extra_id_109]",
2174
+ "lstrip": false,
2175
+ "normalized": false,
2176
+ "rstrip": false,
2177
+ "single_word": false,
2178
+ "special": true
2179
+ },
2180
+ "272": {
2181
+ "content": "[extra_id_110]",
2182
+ "lstrip": false,
2183
+ "normalized": false,
2184
+ "rstrip": false,
2185
+ "single_word": false,
2186
+ "special": true
2187
+ },
2188
+ "273": {
2189
+ "content": "[extra_id_111]",
2190
+ "lstrip": false,
2191
+ "normalized": false,
2192
+ "rstrip": false,
2193
+ "single_word": false,
2194
+ "special": true
2195
+ },
2196
+ "274": {
2197
+ "content": "[extra_id_112]",
2198
+ "lstrip": false,
2199
+ "normalized": false,
2200
+ "rstrip": false,
2201
+ "single_word": false,
2202
+ "special": true
2203
+ },
2204
+ "275": {
2205
+ "content": "[extra_id_113]",
2206
+ "lstrip": false,
2207
+ "normalized": false,
2208
+ "rstrip": false,
2209
+ "single_word": false,
2210
+ "special": true
2211
+ },
2212
+ "276": {
2213
+ "content": "[extra_id_114]",
2214
+ "lstrip": false,
2215
+ "normalized": false,
2216
+ "rstrip": false,
2217
+ "single_word": false,
2218
+ "special": true
2219
+ },
2220
+ "277": {
2221
+ "content": "[extra_id_115]",
2222
+ "lstrip": false,
2223
+ "normalized": false,
2224
+ "rstrip": false,
2225
+ "single_word": false,
2226
+ "special": true
2227
+ },
2228
+ "278": {
2229
+ "content": "[extra_id_116]",
2230
+ "lstrip": false,
2231
+ "normalized": false,
2232
+ "rstrip": false,
2233
+ "single_word": false,
2234
+ "special": true
2235
+ },
2236
+ "279": {
2237
+ "content": "[extra_id_117]",
2238
+ "lstrip": false,
2239
+ "normalized": false,
2240
+ "rstrip": false,
2241
+ "single_word": false,
2242
+ "special": true
2243
+ },
2244
+ "280": {
2245
+ "content": "[extra_id_118]",
2246
+ "lstrip": false,
2247
+ "normalized": false,
2248
+ "rstrip": false,
2249
+ "single_word": false,
2250
+ "special": true
2251
+ },
2252
+ "281": {
2253
+ "content": "[extra_id_119]",
2254
+ "lstrip": false,
2255
+ "normalized": false,
2256
+ "rstrip": false,
2257
+ "single_word": false,
2258
+ "special": true
2259
+ },
2260
+ "282": {
2261
+ "content": "[extra_id_120]",
2262
+ "lstrip": false,
2263
+ "normalized": false,
2264
+ "rstrip": false,
2265
+ "single_word": false,
2266
+ "special": true
2267
+ },
2268
+ "283": {
2269
+ "content": "[extra_id_121]",
2270
+ "lstrip": false,
2271
+ "normalized": false,
2272
+ "rstrip": false,
2273
+ "single_word": false,
2274
+ "special": true
2275
+ },
2276
+ "284": {
2277
+ "content": "[extra_id_122]",
2278
+ "lstrip": false,
2279
+ "normalized": false,
2280
+ "rstrip": false,
2281
+ "single_word": false,
2282
+ "special": true
2283
+ },
2284
+ "285": {
2285
+ "content": "[extra_id_123]",
2286
+ "lstrip": false,
2287
+ "normalized": false,
2288
+ "rstrip": false,
2289
+ "single_word": false,
2290
+ "special": true
2291
+ },
2292
+ "286": {
2293
+ "content": "[extra_id_124]",
2294
+ "lstrip": false,
2295
+ "normalized": false,
2296
+ "rstrip": false,
2297
+ "single_word": false,
2298
+ "special": true
2299
+ },
2300
+ "287": {
2301
+ "content": "[extra_id_125]",
2302
+ "lstrip": false,
2303
+ "normalized": false,
2304
+ "rstrip": false,
2305
+ "single_word": false,
2306
+ "special": true
2307
+ },
2308
+ "288": {
2309
+ "content": "[extra_id_126]",
2310
+ "lstrip": false,
2311
+ "normalized": false,
2312
+ "rstrip": false,
2313
+ "single_word": false,
2314
+ "special": true
2315
+ },
2316
+ "289": {
2317
+ "content": "[extra_id_127]",
2318
+ "lstrip": false,
2319
+ "normalized": false,
2320
+ "rstrip": false,
2321
+ "single_word": false,
2322
+ "special": true
2323
+ },
2324
+ "290": {
2325
+ "content": "[extra_id_128]",
2326
+ "lstrip": false,
2327
+ "normalized": false,
2328
+ "rstrip": false,
2329
+ "single_word": false,
2330
+ "special": true
2331
+ },
2332
+ "291": {
2333
+ "content": "[extra_id_129]",
2334
+ "lstrip": false,
2335
+ "normalized": false,
2336
+ "rstrip": false,
2337
+ "single_word": false,
2338
+ "special": true
2339
+ },
2340
+ "292": {
2341
+ "content": "[extra_id_130]",
2342
+ "lstrip": false,
2343
+ "normalized": false,
2344
+ "rstrip": false,
2345
+ "single_word": false,
2346
+ "special": true
2347
+ },
2348
+ "293": {
2349
+ "content": "[extra_id_131]",
2350
+ "lstrip": false,
2351
+ "normalized": false,
2352
+ "rstrip": false,
2353
+ "single_word": false,
2354
+ "special": true
2355
+ },
2356
+ "294": {
2357
+ "content": "[extra_id_132]",
2358
+ "lstrip": false,
2359
+ "normalized": false,
2360
+ "rstrip": false,
2361
+ "single_word": false,
2362
+ "special": true
2363
+ },
2364
+ "295": {
2365
+ "content": "[extra_id_133]",
2366
+ "lstrip": false,
2367
+ "normalized": false,
2368
+ "rstrip": false,
2369
+ "single_word": false,
2370
+ "special": true
2371
+ },
2372
+ "296": {
2373
+ "content": "[extra_id_134]",
2374
+ "lstrip": false,
2375
+ "normalized": false,
2376
+ "rstrip": false,
2377
+ "single_word": false,
2378
+ "special": true
2379
+ },
2380
+ "297": {
2381
+ "content": "[extra_id_135]",
2382
+ "lstrip": false,
2383
+ "normalized": false,
2384
+ "rstrip": false,
2385
+ "single_word": false,
2386
+ "special": true
2387
+ },
2388
+ "298": {
2389
+ "content": "[extra_id_136]",
2390
+ "lstrip": false,
2391
+ "normalized": false,
2392
+ "rstrip": false,
2393
+ "single_word": false,
2394
+ "special": true
2395
+ },
2396
+ "299": {
2397
+ "content": "[extra_id_137]",
2398
+ "lstrip": false,
2399
+ "normalized": false,
2400
+ "rstrip": false,
2401
+ "single_word": false,
2402
+ "special": true
2403
+ },
2404
+ "300": {
2405
+ "content": "[extra_id_138]",
2406
+ "lstrip": false,
2407
+ "normalized": false,
2408
+ "rstrip": false,
2409
+ "single_word": false,
2410
+ "special": true
2411
+ },
2412
+ "301": {
2413
+ "content": "[extra_id_139]",
2414
+ "lstrip": false,
2415
+ "normalized": false,
2416
+ "rstrip": false,
2417
+ "single_word": false,
2418
+ "special": true
2419
+ },
2420
+ "302": {
2421
+ "content": "[extra_id_140]",
2422
+ "lstrip": false,
2423
+ "normalized": false,
2424
+ "rstrip": false,
2425
+ "single_word": false,
2426
+ "special": true
2427
+ },
2428
+ "303": {
2429
+ "content": "[extra_id_141]",
2430
+ "lstrip": false,
2431
+ "normalized": false,
2432
+ "rstrip": false,
2433
+ "single_word": false,
2434
+ "special": true
2435
+ },
2436
+ "304": {
2437
+ "content": "[extra_id_142]",
2438
+ "lstrip": false,
2439
+ "normalized": false,
2440
+ "rstrip": false,
2441
+ "single_word": false,
2442
+ "special": true
2443
+ },
2444
+ "305": {
2445
+ "content": "[extra_id_143]",
2446
+ "lstrip": false,
2447
+ "normalized": false,
2448
+ "rstrip": false,
2449
+ "single_word": false,
2450
+ "special": true
2451
+ },
2452
+ "306": {
2453
+ "content": "[extra_id_144]",
2454
+ "lstrip": false,
2455
+ "normalized": false,
2456
+ "rstrip": false,
2457
+ "single_word": false,
2458
+ "special": true
2459
+ },
2460
+ "307": {
2461
+ "content": "[extra_id_145]",
2462
+ "lstrip": false,
2463
+ "normalized": false,
2464
+ "rstrip": false,
2465
+ "single_word": false,
2466
+ "special": true
2467
+ },
2468
+ "308": {
2469
+ "content": "[extra_id_146]",
2470
+ "lstrip": false,
2471
+ "normalized": false,
2472
+ "rstrip": false,
2473
+ "single_word": false,
2474
+ "special": true
2475
+ },
2476
+ "309": {
2477
+ "content": "[extra_id_147]",
2478
+ "lstrip": false,
2479
+ "normalized": false,
2480
+ "rstrip": false,
2481
+ "single_word": false,
2482
+ "special": true
2483
+ },
2484
+ "310": {
2485
+ "content": "[extra_id_148]",
2486
+ "lstrip": false,
2487
+ "normalized": false,
2488
+ "rstrip": false,
2489
+ "single_word": false,
2490
+ "special": true
2491
+ },
2492
+ "311": {
2493
+ "content": "[extra_id_149]",
2494
+ "lstrip": false,
2495
+ "normalized": false,
2496
+ "rstrip": false,
2497
+ "single_word": false,
2498
+ "special": true
2499
+ },
2500
+ "312": {
2501
+ "content": "[extra_id_150]",
2502
+ "lstrip": false,
2503
+ "normalized": false,
2504
+ "rstrip": false,
2505
+ "single_word": false,
2506
+ "special": true
2507
+ },
2508
+ "313": {
2509
+ "content": "[extra_id_151]",
2510
+ "lstrip": false,
2511
+ "normalized": false,
2512
+ "rstrip": false,
2513
+ "single_word": false,
2514
+ "special": true
2515
+ },
2516
+ "314": {
2517
+ "content": "[extra_id_152]",
2518
+ "lstrip": false,
2519
+ "normalized": false,
2520
+ "rstrip": false,
2521
+ "single_word": false,
2522
+ "special": true
2523
+ },
2524
+ "315": {
2525
+ "content": "[extra_id_153]",
2526
+ "lstrip": false,
2527
+ "normalized": false,
2528
+ "rstrip": false,
2529
+ "single_word": false,
2530
+ "special": true
2531
+ },
2532
+ "316": {
2533
+ "content": "[extra_id_154]",
2534
+ "lstrip": false,
2535
+ "normalized": false,
2536
+ "rstrip": false,
2537
+ "single_word": false,
2538
+ "special": true
2539
+ },
2540
+ "317": {
2541
+ "content": "[extra_id_155]",
2542
+ "lstrip": false,
2543
+ "normalized": false,
2544
+ "rstrip": false,
2545
+ "single_word": false,
2546
+ "special": true
2547
+ },
2548
+ "318": {
2549
+ "content": "[extra_id_156]",
2550
+ "lstrip": false,
2551
+ "normalized": false,
2552
+ "rstrip": false,
2553
+ "single_word": false,
2554
+ "special": true
2555
+ },
2556
+ "319": {
2557
+ "content": "[extra_id_157]",
2558
+ "lstrip": false,
2559
+ "normalized": false,
2560
+ "rstrip": false,
2561
+ "single_word": false,
2562
+ "special": true
2563
+ },
2564
+ "320": {
2565
+ "content": "[extra_id_158]",
2566
+ "lstrip": false,
2567
+ "normalized": false,
2568
+ "rstrip": false,
2569
+ "single_word": false,
2570
+ "special": true
2571
+ },
2572
+ "321": {
2573
+ "content": "[extra_id_159]",
2574
+ "lstrip": false,
2575
+ "normalized": false,
2576
+ "rstrip": false,
2577
+ "single_word": false,
2578
+ "special": true
2579
+ },
2580
+ "322": {
2581
+ "content": "[extra_id_160]",
2582
+ "lstrip": false,
2583
+ "normalized": false,
2584
+ "rstrip": false,
2585
+ "single_word": false,
2586
+ "special": true
2587
+ },
2588
+ "323": {
2589
+ "content": "[extra_id_161]",
2590
+ "lstrip": false,
2591
+ "normalized": false,
2592
+ "rstrip": false,
2593
+ "single_word": false,
2594
+ "special": true
2595
+ },
2596
+ "324": {
2597
+ "content": "[extra_id_162]",
2598
+ "lstrip": false,
2599
+ "normalized": false,
2600
+ "rstrip": false,
2601
+ "single_word": false,
2602
+ "special": true
2603
+ },
2604
+ "325": {
2605
+ "content": "[extra_id_163]",
2606
+ "lstrip": false,
2607
+ "normalized": false,
2608
+ "rstrip": false,
2609
+ "single_word": false,
2610
+ "special": true
2611
+ },
2612
+ "326": {
2613
+ "content": "[extra_id_164]",
2614
+ "lstrip": false,
2615
+ "normalized": false,
2616
+ "rstrip": false,
2617
+ "single_word": false,
2618
+ "special": true
2619
+ },
2620
+ "327": {
2621
+ "content": "[extra_id_165]",
2622
+ "lstrip": false,
2623
+ "normalized": false,
2624
+ "rstrip": false,
2625
+ "single_word": false,
2626
+ "special": true
2627
+ },
2628
+ "328": {
2629
+ "content": "[extra_id_166]",
2630
+ "lstrip": false,
2631
+ "normalized": false,
2632
+ "rstrip": false,
2633
+ "single_word": false,
2634
+ "special": true
2635
+ },
2636
+ "329": {
2637
+ "content": "[extra_id_167]",
2638
+ "lstrip": false,
2639
+ "normalized": false,
2640
+ "rstrip": false,
2641
+ "single_word": false,
2642
+ "special": true
2643
+ },
2644
+ "330": {
2645
+ "content": "[extra_id_168]",
2646
+ "lstrip": false,
2647
+ "normalized": false,
2648
+ "rstrip": false,
2649
+ "single_word": false,
2650
+ "special": true
2651
+ },
2652
+ "331": {
2653
+ "content": "[extra_id_169]",
2654
+ "lstrip": false,
2655
+ "normalized": false,
2656
+ "rstrip": false,
2657
+ "single_word": false,
2658
+ "special": true
2659
+ },
2660
+ "332": {
2661
+ "content": "[extra_id_170]",
2662
+ "lstrip": false,
2663
+ "normalized": false,
2664
+ "rstrip": false,
2665
+ "single_word": false,
2666
+ "special": true
2667
+ },
2668
+ "333": {
2669
+ "content": "[extra_id_171]",
2670
+ "lstrip": false,
2671
+ "normalized": false,
2672
+ "rstrip": false,
2673
+ "single_word": false,
2674
+ "special": true
2675
+ },
2676
+ "334": {
2677
+ "content": "[extra_id_172]",
2678
+ "lstrip": false,
2679
+ "normalized": false,
2680
+ "rstrip": false,
2681
+ "single_word": false,
2682
+ "special": true
2683
+ },
2684
+ "335": {
2685
+ "content": "[extra_id_173]",
2686
+ "lstrip": false,
2687
+ "normalized": false,
2688
+ "rstrip": false,
2689
+ "single_word": false,
2690
+ "special": true
2691
+ },
2692
+ "336": {
2693
+ "content": "[extra_id_174]",
2694
+ "lstrip": false,
2695
+ "normalized": false,
2696
+ "rstrip": false,
2697
+ "single_word": false,
2698
+ "special": true
2699
+ },
2700
+ "337": {
2701
+ "content": "[extra_id_175]",
2702
+ "lstrip": false,
2703
+ "normalized": false,
2704
+ "rstrip": false,
2705
+ "single_word": false,
2706
+ "special": true
2707
+ },
2708
+ "338": {
2709
+ "content": "[extra_id_176]",
2710
+ "lstrip": false,
2711
+ "normalized": false,
2712
+ "rstrip": false,
2713
+ "single_word": false,
2714
+ "special": true
2715
+ },
2716
+ "339": {
2717
+ "content": "[extra_id_177]",
2718
+ "lstrip": false,
2719
+ "normalized": false,
2720
+ "rstrip": false,
2721
+ "single_word": false,
2722
+ "special": true
2723
+ },
2724
+ "340": {
2725
+ "content": "[extra_id_178]",
2726
+ "lstrip": false,
2727
+ "normalized": false,
2728
+ "rstrip": false,
2729
+ "single_word": false,
2730
+ "special": true
2731
+ },
2732
+ "341": {
2733
+ "content": "[extra_id_179]",
2734
+ "lstrip": false,
2735
+ "normalized": false,
2736
+ "rstrip": false,
2737
+ "single_word": false,
2738
+ "special": true
2739
+ },
2740
+ "342": {
2741
+ "content": "[extra_id_180]",
2742
+ "lstrip": false,
2743
+ "normalized": false,
2744
+ "rstrip": false,
2745
+ "single_word": false,
2746
+ "special": true
2747
+ },
2748
+ "343": {
2749
+ "content": "[extra_id_181]",
2750
+ "lstrip": false,
2751
+ "normalized": false,
2752
+ "rstrip": false,
2753
+ "single_word": false,
2754
+ "special": true
2755
+ },
2756
+ "344": {
2757
+ "content": "[extra_id_182]",
2758
+ "lstrip": false,
2759
+ "normalized": false,
2760
+ "rstrip": false,
2761
+ "single_word": false,
2762
+ "special": true
2763
+ },
2764
+ "345": {
2765
+ "content": "[extra_id_183]",
2766
+ "lstrip": false,
2767
+ "normalized": false,
2768
+ "rstrip": false,
2769
+ "single_word": false,
2770
+ "special": true
2771
+ },
2772
+ "346": {
2773
+ "content": "[extra_id_184]",
2774
+ "lstrip": false,
2775
+ "normalized": false,
2776
+ "rstrip": false,
2777
+ "single_word": false,
2778
+ "special": true
2779
+ },
2780
+ "347": {
2781
+ "content": "[extra_id_185]",
2782
+ "lstrip": false,
2783
+ "normalized": false,
2784
+ "rstrip": false,
2785
+ "single_word": false,
2786
+ "special": true
2787
+ },
2788
+ "348": {
2789
+ "content": "[extra_id_186]",
2790
+ "lstrip": false,
2791
+ "normalized": false,
2792
+ "rstrip": false,
2793
+ "single_word": false,
2794
+ "special": true
2795
+ },
2796
+ "349": {
2797
+ "content": "[extra_id_187]",
2798
+ "lstrip": false,
2799
+ "normalized": false,
2800
+ "rstrip": false,
2801
+ "single_word": false,
2802
+ "special": true
2803
+ },
2804
+ "350": {
2805
+ "content": "[extra_id_188]",
2806
+ "lstrip": false,
2807
+ "normalized": false,
2808
+ "rstrip": false,
2809
+ "single_word": false,
2810
+ "special": true
2811
+ },
2812
+ "351": {
2813
+ "content": "[extra_id_189]",
2814
+ "lstrip": false,
2815
+ "normalized": false,
2816
+ "rstrip": false,
2817
+ "single_word": false,
2818
+ "special": true
2819
+ },
2820
+ "352": {
2821
+ "content": "[extra_id_190]",
2822
+ "lstrip": false,
2823
+ "normalized": false,
2824
+ "rstrip": false,
2825
+ "single_word": false,
2826
+ "special": true
2827
+ },
2828
+ "353": {
2829
+ "content": "[extra_id_191]",
2830
+ "lstrip": false,
2831
+ "normalized": false,
2832
+ "rstrip": false,
2833
+ "single_word": false,
2834
+ "special": true
2835
+ },
2836
+ "354": {
2837
+ "content": "[extra_id_192]",
2838
+ "lstrip": false,
2839
+ "normalized": false,
2840
+ "rstrip": false,
2841
+ "single_word": false,
2842
+ "special": true
2843
+ },
2844
+ "355": {
2845
+ "content": "[extra_id_193]",
2846
+ "lstrip": false,
2847
+ "normalized": false,
2848
+ "rstrip": false,
2849
+ "single_word": false,
2850
+ "special": true
2851
+ },
2852
+ "356": {
2853
+ "content": "[extra_id_194]",
2854
+ "lstrip": false,
2855
+ "normalized": false,
2856
+ "rstrip": false,
2857
+ "single_word": false,
2858
+ "special": true
2859
+ },
2860
+ "357": {
2861
+ "content": "[extra_id_195]",
2862
+ "lstrip": false,
2863
+ "normalized": false,
2864
+ "rstrip": false,
2865
+ "single_word": false,
2866
+ "special": true
2867
+ },
2868
+ "358": {
2869
+ "content": "[extra_id_196]",
2870
+ "lstrip": false,
2871
+ "normalized": false,
2872
+ "rstrip": false,
2873
+ "single_word": false,
2874
+ "special": true
2875
+ },
2876
+ "359": {
2877
+ "content": "[extra_id_197]",
2878
+ "lstrip": false,
2879
+ "normalized": false,
2880
+ "rstrip": false,
2881
+ "single_word": false,
2882
+ "special": true
2883
+ },
2884
+ "360": {
2885
+ "content": "[extra_id_198]",
2886
+ "lstrip": false,
2887
+ "normalized": false,
2888
+ "rstrip": false,
2889
+ "single_word": false,
2890
+ "special": true
2891
+ },
2892
+ "361": {
2893
+ "content": "[|endofturn|]",
2894
+ "lstrip": false,
2895
+ "normalized": false,
2896
+ "rstrip": false,
2897
+ "single_word": false,
2898
+ "special": true
2899
+ }
2900
+ },
2901
+ "additional_special_token": [
2902
+ "[unused0]",
2903
+ "[unused1]",
2904
+ "[unused2]",
2905
+ "[unused3]",
2906
+ "[unused4]",
2907
+ "[unused5]",
2908
+ "[unused6]",
2909
+ "[unused7]",
2910
+ "[unused8]",
2911
+ "[unused9]",
2912
+ "[unused10]",
2913
+ "[unused11]",
2914
+ "[unused12]",
2915
+ "[unused13]",
2916
+ "[unused14]",
2917
+ "[unused15]",
2918
+ "[unused16]",
2919
+ "[unused17]",
2920
+ "[unused18]",
2921
+ "[unused19]",
2922
+ "[unused20]",
2923
+ "[unused21]",
2924
+ "[unused22]",
2925
+ "[unused23]",
2926
+ "[unused24]",
2927
+ "[unused25]",
2928
+ "[unused26]",
2929
+ "[unused27]",
2930
+ "[unused28]",
2931
+ "[unused29]",
2932
+ "[unused30]",
2933
+ "[unused31]",
2934
+ "[unused32]",
2935
+ "[unused33]",
2936
+ "[unused34]",
2937
+ "[unused35]",
2938
+ "[unused36]",
2939
+ "[unused37]",
2940
+ "[unused38]",
2941
+ "[unused39]",
2942
+ "[unused40]",
2943
+ "[unused41]",
2944
+ "[unused42]",
2945
+ "[unused43]",
2946
+ "[unused44]",
2947
+ "[unused45]",
2948
+ "[unused46]",
2949
+ "[unused47]",
2950
+ "[unused48]",
2951
+ "[unused49]",
2952
+ "[unused50]",
2953
+ "[unused51]",
2954
+ "[unused52]",
2955
+ "[unused53]",
2956
+ "[unused54]",
2957
+ "[unused55]",
2958
+ "[unused56]",
2959
+ "[unused57]",
2960
+ "[unused58]",
2961
+ "[unused59]",
2962
+ "[unused60]",
2963
+ "[unused61]",
2964
+ "[unused62]",
2965
+ "[unused63]",
2966
+ "[unused64]",
2967
+ "[unused65]",
2968
+ "[unused66]",
2969
+ "[unused67]",
2970
+ "[unused68]",
2971
+ "[unused69]",
2972
+ "[unused70]",
2973
+ "[unused71]",
2974
+ "[unused72]",
2975
+ "[unused73]",
2976
+ "[unused74]",
2977
+ "[unused75]",
2978
+ "[unused76]",
2979
+ "[unused77]",
2980
+ "[unused78]",
2981
+ "[unused79]",
2982
+ "[unused80]",
2983
+ "[unused81]",
2984
+ "[unused82]",
2985
+ "[unused83]",
2986
+ "[unused84]",
2987
+ "[unused85]",
2988
+ "[unused86]",
2989
+ "[unused87]",
2990
+ "[unused88]",
2991
+ "[unused89]",
2992
+ "[unused90]",
2993
+ "[unused91]",
2994
+ "[unused92]",
2995
+ "[unused93]",
2996
+ "[unused94]",
2997
+ "[unused95]",
2998
+ "[unused96]",
2999
+ "[unused97]",
3000
+ "[unused98]",
3001
+ "[unused99]",
3002
+ "[extra_id_0]",
3003
+ "[extra_id_1]",
3004
+ "[extra_id_2]",
3005
+ "[extra_id_3]",
3006
+ "[extra_id_4]",
3007
+ "[extra_id_5]",
3008
+ "[extra_id_6]",
3009
+ "[extra_id_7]",
3010
+ "[extra_id_8]",
3011
+ "[extra_id_9]",
3012
+ "[extra_id_10]",
3013
+ "[extra_id_11]",
3014
+ "[extra_id_12]",
3015
+ "[extra_id_13]",
3016
+ "[extra_id_14]",
3017
+ "[extra_id_15]",
3018
+ "[extra_id_16]",
3019
+ "[extra_id_17]",
3020
+ "[extra_id_18]",
3021
+ "[extra_id_19]",
3022
+ "[extra_id_20]",
3023
+ "[extra_id_21]",
3024
+ "[extra_id_22]",
3025
+ "[extra_id_23]",
3026
+ "[extra_id_24]",
3027
+ "[extra_id_25]",
3028
+ "[extra_id_26]",
3029
+ "[extra_id_27]",
3030
+ "[extra_id_28]",
3031
+ "[extra_id_29]",
3032
+ "[extra_id_30]",
3033
+ "[extra_id_31]",
3034
+ "[extra_id_32]",
3035
+ "[extra_id_33]",
3036
+ "[extra_id_34]",
3037
+ "[extra_id_35]",
3038
+ "[extra_id_36]",
3039
+ "[extra_id_37]",
3040
+ "[extra_id_38]",
3041
+ "[extra_id_39]",
3042
+ "[extra_id_40]",
3043
+ "[extra_id_41]",
3044
+ "[extra_id_42]",
3045
+ "[extra_id_43]",
3046
+ "[extra_id_44]",
3047
+ "[extra_id_45]",
3048
+ "[extra_id_46]",
3049
+ "[extra_id_47]",
3050
+ "[extra_id_48]",
3051
+ "[extra_id_49]",
3052
+ "[extra_id_50]",
3053
+ "[extra_id_51]",
3054
+ "[extra_id_52]",
3055
+ "[extra_id_53]",
3056
+ "[extra_id_54]",
3057
+ "[extra_id_55]",
3058
+ "[extra_id_56]",
3059
+ "[extra_id_57]",
3060
+ "[extra_id_58]",
3061
+ "[extra_id_59]",
3062
+ "[extra_id_60]",
3063
+ "[extra_id_61]",
3064
+ "[extra_id_62]",
3065
+ "[extra_id_63]",
3066
+ "[extra_id_64]",
3067
+ "[extra_id_65]",
3068
+ "[extra_id_66]",
3069
+ "[extra_id_67]",
3070
+ "[extra_id_68]",
3071
+ "[extra_id_69]",
3072
+ "[extra_id_70]",
3073
+ "[extra_id_71]",
3074
+ "[extra_id_72]",
3075
+ "[extra_id_73]",
3076
+ "[extra_id_74]",
3077
+ "[extra_id_75]",
3078
+ "[extra_id_76]",
3079
+ "[extra_id_77]",
3080
+ "[extra_id_78]",
3081
+ "[extra_id_79]",
3082
+ "[extra_id_80]",
3083
+ "[extra_id_81]",
3084
+ "[extra_id_82]",
3085
+ "[extra_id_83]",
3086
+ "[extra_id_84]",
3087
+ "[extra_id_85]",
3088
+ "[extra_id_86]",
3089
+ "[extra_id_87]",
3090
+ "[extra_id_88]",
3091
+ "[extra_id_89]",
3092
+ "[extra_id_90]",
3093
+ "[extra_id_91]",
3094
+ "[extra_id_92]",
3095
+ "[extra_id_93]",
3096
+ "[extra_id_94]",
3097
+ "[extra_id_95]",
3098
+ "[extra_id_96]",
3099
+ "[extra_id_97]",
3100
+ "[extra_id_98]",
3101
+ "[extra_id_99]",
3102
+ "[extra_id_100]",
3103
+ "[extra_id_101]",
3104
+ "[extra_id_102]",
3105
+ "[extra_id_103]",
3106
+ "[extra_id_104]",
3107
+ "[extra_id_105]",
3108
+ "[extra_id_106]",
3109
+ "[extra_id_107]",
3110
+ "[extra_id_108]",
3111
+ "[extra_id_109]",
3112
+ "[extra_id_110]",
3113
+ "[extra_id_111]",
3114
+ "[extra_id_112]",
3115
+ "[extra_id_113]",
3116
+ "[extra_id_114]",
3117
+ "[extra_id_115]",
3118
+ "[extra_id_116]",
3119
+ "[extra_id_117]",
3120
+ "[extra_id_118]",
3121
+ "[extra_id_119]",
3122
+ "[extra_id_120]",
3123
+ "[extra_id_121]",
3124
+ "[extra_id_122]",
3125
+ "[extra_id_123]",
3126
+ "[extra_id_124]",
3127
+ "[extra_id_125]",
3128
+ "[extra_id_126]",
3129
+ "[extra_id_127]",
3130
+ "[extra_id_128]",
3131
+ "[extra_id_129]",
3132
+ "[extra_id_130]",
3133
+ "[extra_id_131]",
3134
+ "[extra_id_132]",
3135
+ "[extra_id_133]",
3136
+ "[extra_id_134]",
3137
+ "[extra_id_135]",
3138
+ "[extra_id_136]",
3139
+ "[extra_id_137]",
3140
+ "[extra_id_138]",
3141
+ "[extra_id_139]",
3142
+ "[extra_id_140]",
3143
+ "[extra_id_141]",
3144
+ "[extra_id_142]",
3145
+ "[extra_id_143]",
3146
+ "[extra_id_144]",
3147
+ "[extra_id_145]",
3148
+ "[extra_id_146]",
3149
+ "[extra_id_147]",
3150
+ "[extra_id_148]",
3151
+ "[extra_id_149]",
3152
+ "[extra_id_150]",
3153
+ "[extra_id_151]",
3154
+ "[extra_id_152]",
3155
+ "[extra_id_153]",
3156
+ "[extra_id_154]",
3157
+ "[extra_id_155]",
3158
+ "[extra_id_156]",
3159
+ "[extra_id_157]",
3160
+ "[extra_id_158]",
3161
+ "[extra_id_159]",
3162
+ "[extra_id_160]",
3163
+ "[extra_id_161]",
3164
+ "[extra_id_162]",
3165
+ "[extra_id_163]",
3166
+ "[extra_id_164]",
3167
+ "[extra_id_165]",
3168
+ "[extra_id_166]",
3169
+ "[extra_id_167]",
3170
+ "[extra_id_168]",
3171
+ "[extra_id_169]",
3172
+ "[extra_id_170]",
3173
+ "[extra_id_171]",
3174
+ "[extra_id_172]",
3175
+ "[extra_id_173]",
3176
+ "[extra_id_174]",
3177
+ "[extra_id_175]",
3178
+ "[extra_id_176]",
3179
+ "[extra_id_177]",
3180
+ "[extra_id_178]",
3181
+ "[extra_id_179]",
3182
+ "[extra_id_180]",
3183
+ "[extra_id_181]",
3184
+ "[extra_id_182]",
3185
+ "[extra_id_183]",
3186
+ "[extra_id_184]",
3187
+ "[extra_id_185]",
3188
+ "[extra_id_186]",
3189
+ "[extra_id_187]",
3190
+ "[extra_id_188]",
3191
+ "[extra_id_189]",
3192
+ "[extra_id_190]",
3193
+ "[extra_id_191]",
3194
+ "[extra_id_192]",
3195
+ "[extra_id_193]",
3196
+ "[extra_id_194]",
3197
+ "[extra_id_195]",
3198
+ "[extra_id_196]",
3199
+ "[extra_id_197]",
3200
+ "[extra_id_198]",
3201
+ "[|endofturn|]",
3202
+ "PI:URL",
3203
+ "PI:EMAIL",
3204
+ "PI:ACCOUNT_NUM",
3205
+ "PI:PHONE_NUM",
3206
+ "PI:BUSINESS_NUM",
3207
+ "PI:ANNON",
3208
+ "PI:KEY",
3209
+ "PI:ID",
3210
+ "PI:IP_ADDRESS",
3211
+ "PI:USER"
3212
+ ],
3213
+ "bos_token": "[BOS]",
3214
+ "chat_template": "{% for message in messages %}{% if loop.first and message['role'] != 'system' %}{{ '[|system|][|endofturn|]\n' }}{% endif %}{{ '[|' + message['role'] + '|]' + message['content'] }}{% if message['role'] == 'user' %}{{ '\n' }}{% else %}{{ '[|endofturn|]\n' }}{% endif %}{% endfor %}{% if add_generation_prompt %}{{ '[|assistant|]' }}{% endif %}",
3215
+ "clean_up_tokenization_spaces": true,
3216
+ "eos_token": "[|endofturn|]",
3217
+ "model_max_length": 1000000000000000019884624838656,
3218
+ "pad_token": "[PAD]",
3219
+ "tokenizer_class": "GPT2Tokenizer",
3220
+ "unk_token": "[UNK]"
3221
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff