david
commited on
Commit
·
5acd018
1
Parent(s):
68d9ae0
rewrite segments analysis
Browse files- config.py +3 -1
- tests/test_transcript_buffer.py +59 -0
- tests/test_transcript_chunk.py +57 -0
- transcribe/strategy.py +247 -259
- transcribe/whisper_llm_serve.py +26 -119
config.py
CHANGED
@@ -3,7 +3,7 @@ import re
|
|
3 |
import logging
|
4 |
|
5 |
logging.basicConfig(
|
6 |
-
level=logging.
|
7 |
format="%(asctime)s - %(levelname)s - %(message)s",
|
8 |
datefmt="%H:%M:%S"
|
9 |
)
|
@@ -14,6 +14,8 @@ logging.getLogger("pywhispercpp").setLevel(logging.WARNING)
|
|
14 |
BASE_DIR = pathlib.Path(__file__).parent
|
15 |
MODEL_DIR = BASE_DIR / "moyoyo_asr_models"
|
16 |
ASSERT_DIR = BASE_DIR / "assets"
|
|
|
|
|
17 |
# 标点
|
18 |
SENTENCE_END_MARKERS = ['.', '!', '?', '。', '!', '?', ';', ';', ':', ':']
|
19 |
PAUSE_END_MARKERS = [',', ',', '、']
|
|
|
3 |
import logging
|
4 |
|
5 |
logging.basicConfig(
|
6 |
+
level=logging.DEBUG,
|
7 |
format="%(asctime)s - %(levelname)s - %(message)s",
|
8 |
datefmt="%H:%M:%S"
|
9 |
)
|
|
|
14 |
BASE_DIR = pathlib.Path(__file__).parent
|
15 |
MODEL_DIR = BASE_DIR / "moyoyo_asr_models"
|
16 |
ASSERT_DIR = BASE_DIR / "assets"
|
17 |
+
|
18 |
+
SAMPLE_RATE = 16000
|
19 |
# 标点
|
20 |
SENTENCE_END_MARKERS = ['.', '!', '?', '。', '!', '?', ';', ';', ':', ':']
|
21 |
PAUSE_END_MARKERS = [',', ',', '、']
|
tests/test_transcript_buffer.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import unittest
|
2 |
+
from transcribe.strategy import TranscriptBuffer # 请替换为你的实际模块名
|
3 |
+
|
4 |
+
class TestTranscriptBuffer(unittest.TestCase):
|
5 |
+
|
6 |
+
def setUp(self):
|
7 |
+
self.buffer = TranscriptBuffer()
|
8 |
+
|
9 |
+
def test_update_pending_text(self):
|
10 |
+
self.buffer.update_pending_text("Hello")
|
11 |
+
self.assertEqual(self.buffer.pending_text, "Hello")
|
12 |
+
|
13 |
+
def test_commit_line(self):
|
14 |
+
self.buffer.update_pending_text("This is a line.")
|
15 |
+
self.buffer.commit_line()
|
16 |
+
self.assertEqual(self.buffer.paragraph, "This is a line.")
|
17 |
+
self.assertEqual(self.buffer.pending_text, "")
|
18 |
+
|
19 |
+
def test_commit_paragraph(self):
|
20 |
+
self.buffer.update_pending_text("Sentence 1.")
|
21 |
+
self.buffer.commit_line()
|
22 |
+
self.buffer.update_pending_text("Sentence 2.")
|
23 |
+
self.buffer.commit_line()
|
24 |
+
self.buffer.commit_paragraph(end_of_sentence=True)
|
25 |
+
|
26 |
+
self.assertEqual(self.buffer.get_seg_id(), 1)
|
27 |
+
self.assertEqual(self.buffer.latest_paragraph, "Sentence 1.Sentence 2.")
|
28 |
+
self.assertEqual(self.buffer.paragraph, "")
|
29 |
+
self.assertEqual(self.buffer.pending_text, "")
|
30 |
+
|
31 |
+
def test_commit_paragraph_without_end(self):
|
32 |
+
self.buffer.update_pending_text("Incomplete sentence.")
|
33 |
+
self.buffer.commit_line()
|
34 |
+
self.buffer.commit_paragraph(end_of_sentence=False)
|
35 |
+
|
36 |
+
# 段落不应提交
|
37 |
+
self.assertEqual(self.buffer.get_seg_id(), 0)
|
38 |
+
self.assertEqual(self.buffer.paragraph, "Incomplete sentence.")
|
39 |
+
|
40 |
+
def test_update_and_commit_end_sentence(self):
|
41 |
+
self.buffer.update_and_commit("Stable.", "Remaining", is_end_sentence=True)
|
42 |
+
|
43 |
+
self.assertEqual(self.buffer.latest_paragraph, "Stable.")
|
44 |
+
self.assertEqual(self.buffer.pending_text, "Remaining")
|
45 |
+
self.assertEqual(self.buffer.paragraph, "")
|
46 |
+
|
47 |
+
def test_update_and_commit_partial_sentence(self):
|
48 |
+
self.buffer.update_and_commit("Partial", "New Buffer", is_end_sentence=False)
|
49 |
+
|
50 |
+
self.assertEqual(self.buffer.paragraph, "Partial")
|
51 |
+
self.assertEqual(self.buffer.pending_text, "New Buffer")
|
52 |
+
self.assertEqual(self.buffer.get_seg_id(), 0)
|
53 |
+
|
54 |
+
def test_current_not_commit_text(self):
|
55 |
+
self.buffer.update_and_commit("Part 1.", "Live text", is_end_sentence=False)
|
56 |
+
self.assertEqual(self.buffer.current_not_commit_text, "Part 1.Live text")
|
57 |
+
|
58 |
+
if __name__ == "__main__":
|
59 |
+
unittest.main()
|
tests/test_transcript_chunk.py
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import unittest
|
2 |
+
from transcribe.strategy import TranscriptChunk, TranscriptToken, SplitMode
|
3 |
+
|
4 |
+
class TestTranscriptChunk(unittest.TestCase):
|
5 |
+
|
6 |
+
def setUp(self):
|
7 |
+
self.tokens = [
|
8 |
+
TranscriptToken(text="Hello", t0=0, t1=100),
|
9 |
+
TranscriptToken(text=",", t0=100, t1=200),
|
10 |
+
TranscriptToken(text="world", t0=200, t1=300),
|
11 |
+
TranscriptToken(text=".", t0=300, t1=400),
|
12 |
+
]
|
13 |
+
self.chunk = TranscriptChunk(items=self.tokens, separator=" ")
|
14 |
+
|
15 |
+
def test_split_by_punctuation(self):
|
16 |
+
chunks = self.chunk.split_by(SplitMode.PUNCTUATION)
|
17 |
+
self.assertEqual(len(chunks), 3)
|
18 |
+
self.assertEqual(chunks[0].join(), "Hello ,")
|
19 |
+
self.assertEqual(chunks[1].join(), "world .")
|
20 |
+
self.assertEqual(chunks[2].join(), "")
|
21 |
+
|
22 |
+
def test_get_split_first_rest(self):
|
23 |
+
first, rest = self.chunk.get_split_first_rest(SplitMode.PUNCTUATION)
|
24 |
+
self.assertEqual(first.join(), "Hello ,")
|
25 |
+
self.assertEqual(len(rest), 2)
|
26 |
+
self.assertEqual(rest[0].join(), "world .")
|
27 |
+
self.assertEqual(rest[1].join(), "")
|
28 |
+
|
29 |
+
def test_punctuation_numbers(self):
|
30 |
+
self.assertEqual(self.chunk.puncation_numbers(), 2)
|
31 |
+
|
32 |
+
def test_length(self):
|
33 |
+
self.assertEqual(self.chunk.length(), 4)
|
34 |
+
|
35 |
+
def test_join(self):
|
36 |
+
self.assertEqual(self.chunk.join(), "Hello , world .")
|
37 |
+
|
38 |
+
def test_compare(self):
|
39 |
+
other_chunk = TranscriptChunk(items=[
|
40 |
+
TranscriptToken(text="Hello", t0=0, t1=100),
|
41 |
+
TranscriptToken(text="!", t0=100, t1=200),
|
42 |
+
], separator=" ")
|
43 |
+
similarity = self.chunk.compare(other_chunk)
|
44 |
+
self.assertTrue(0 < similarity < 1)
|
45 |
+
|
46 |
+
def test_has_punctuation(self):
|
47 |
+
self.assertTrue(self.chunk.has_punctuation())
|
48 |
+
|
49 |
+
def test_get_buffer_index(self):
|
50 |
+
# t1 = 400 -> index = 400 / 100 * 16000 = 64000
|
51 |
+
self.assertEqual(self.chunk.get_buffer_index(), 64000)
|
52 |
+
|
53 |
+
def test_is_end_sentence(self):
|
54 |
+
self.assertTrue(self.chunk.is_end_sentence())
|
55 |
+
|
56 |
+
if __name__ == '__main__':
|
57 |
+
unittest.main()
|
transcribe/strategy.py
CHANGED
@@ -3,303 +3,291 @@ import collections
|
|
3 |
import logging
|
4 |
from difflib import SequenceMatcher
|
5 |
from itertools import chain
|
6 |
-
from dataclasses import dataclass
|
7 |
-
from typing import List, Tuple, Optional, Deque, Any, Iterator
|
8 |
-
from config import SENTENCE_END_MARKERS, ALL_MARKERS,SENTENCE_END_PATTERN,REGEX_MARKERS
|
9 |
import numpy as np
|
10 |
-
|
11 |
logger = logging.getLogger("TranscriptionStrategy")
|
12 |
|
13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
@dataclass
|
15 |
-
class
|
16 |
"""表示一个转录片段,包含文本和时间信息"""
|
17 |
-
text: str
|
18 |
t0: float # 开始时间(百分之一秒)
|
19 |
t1: float # 结束时间(百分之一秒)
|
20 |
|
21 |
-
def
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
self.
|
32 |
-
|
33 |
-
def add_entry(self, text: str, index: int) -> None:
|
34 |
-
"""
|
35 |
-
添加新的文本和索引到历史记录中
|
36 |
-
|
37 |
-
Args:
|
38 |
-
text: 文本内容
|
39 |
-
index: 当前buffer的相对下标
|
40 |
-
"""
|
41 |
-
self.history.append((text, index))
|
42 |
-
|
43 |
-
def get_stable_index(self, similarity_threshold: float = 0.7) -> Optional[int]:
|
44 |
-
"""
|
45 |
-
根据文本相似度,判断文本是否稳定,返回稳定文本的索引
|
46 |
-
|
47 |
-
Args:
|
48 |
-
similarity_threshold: 相似度阈值,超过此值认为文本稳定
|
49 |
-
|
50 |
-
Returns:
|
51 |
-
稳定文本的索引,如果没有找到稳定文本则返回None
|
52 |
-
"""
|
53 |
-
if len(self.history) < 2:
|
54 |
-
return None
|
55 |
|
56 |
-
|
57 |
-
|
58 |
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
return None
|
65 |
|
66 |
@staticmethod
|
67 |
def _calculate_similarity(text1: str, text2: str) -> float:
|
68 |
"""计算两段文本的相似度"""
|
69 |
return SequenceMatcher(None, text1, text2).ratio()
|
70 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
|
73 |
-
class TranscriptionManager:
|
74 |
-
"""
|
75 |
-
管理转录文本的分级结构:临时字符串 -> 短句 -> 完整段落
|
76 |
-
|
77 |
-
|-- 已确认文本 --|-- 观察窗口 --|-- 新输入 --|
|
78 |
-
"""
|
79 |
-
def __init__(self):
|
80 |
-
self._committed_segments: List[str] = [] # 确认的完整段落
|
81 |
-
self._committed_sentences: List[str] = [] # 确认的短句
|
82 |
-
self._temp_string: str = "" # 临时字符串缓冲
|
83 |
-
|
84 |
-
def check_line_break(self, min_length: int = 20) -> bool:
|
85 |
-
"""检查当前短句长度是否达到换行标准"""
|
86 |
-
return self.sentence_length >= min_length
|
87 |
-
|
88 |
-
def force_line_break(self) -> None:
|
89 |
-
"""强制换行,保留当前内容但创建新段落"""
|
90 |
-
if self.current_sentence:
|
91 |
-
self._committed_segments.append(self.current_sentence)
|
92 |
-
self._committed_sentences = []
|
93 |
-
|
94 |
-
@property
|
95 |
-
def current_sentence(self) -> str:
|
96 |
-
"""当前已确认的短句组合"""
|
97 |
-
return "".join(self._committed_sentences)
|
98 |
|
99 |
-
|
100 |
-
|
101 |
-
|
|
|
|
|
102 |
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
|
|
112 |
|
113 |
-
|
114 |
-
|
115 |
-
"""当前短句的总字符长度"""
|
116 |
-
return sum(len(s) for s in self._committed_sentences)
|
117 |
|
118 |
-
def
|
119 |
-
|
120 |
-
self._temp_string = text
|
121 |
-
return self
|
122 |
|
123 |
-
def
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
|
|
|
|
|
|
|
|
128 |
|
129 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
"""
|
131 |
-
|
132 |
|
133 |
Args:
|
134 |
-
|
135 |
-
"""
|
136 |
-
self.commit_sentence()
|
137 |
-
if is_end_of_sentence and self._committed_sentences:
|
138 |
-
self._committed_segments.append(self.current_sentence)
|
139 |
-
self._committed_sentences = []
|
140 |
-
|
141 |
-
def get_all_text(self) -> str:
|
142 |
-
"""获取所有已提交的文本"""
|
143 |
-
all_segments = self._committed_segments.copy()
|
144 |
-
if self.current_sentence:
|
145 |
-
all_segments.append(self.current_sentence)
|
146 |
-
if self._temp_string:
|
147 |
-
all_segments.append(self._temp_string)
|
148 |
-
return "\n".join(all_segments)
|
149 |
-
|
150 |
-
|
151 |
-
class TranscriptionSplitter:
|
152 |
-
"""负责根据语音和文本特征拆分转录片段"""
|
153 |
-
|
154 |
-
@staticmethod
|
155 |
-
def group_by_sentences(segments: List[TranscriptSegment]) -> List[List[TranscriptSegment]]:
|
156 |
-
"""将片段按照完整句子分组"""
|
157 |
-
sequences = []
|
158 |
-
temp_seq = []
|
159 |
-
|
160 |
-
for seg in segments:
|
161 |
-
temp_seq.append(seg)
|
162 |
-
if any(marker in seg.text for marker in SENTENCE_END_MARKERS):
|
163 |
-
sequences.append(temp_seq.copy())
|
164 |
-
temp_seq = []
|
165 |
-
|
166 |
-
if temp_seq:
|
167 |
-
sequences.append(temp_seq)
|
168 |
-
return sequences
|
169 |
-
|
170 |
-
@staticmethod
|
171 |
-
def split_by_punctuation(
|
172 |
-
segments: List[TranscriptSegment],
|
173 |
-
sample_rate: int = 16000,
|
174 |
-
segment_skip_index= 0
|
175 |
-
) -> Tuple[int, List[TranscriptSegment], List[TranscriptSegment], bool]:
|
176 |
-
"""
|
177 |
-
根据标点符号将片段分为左侧(已确认)和右侧(待确认)
|
178 |
-
|
179 |
-
Returns:
|
180 |
-
(分割索引, 左侧片段, 右侧片段, 是否为句子结束)
|
181 |
"""
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
# # 短音频使用所有标点符号作为分割依据
|
188 |
-
# buffer_duration = len(audio_buffer) / sample_rate
|
189 |
-
# markers = ALL_MARKERS if buffer_duration < 12 else SENTENCE_END_MARKERS
|
190 |
-
skip_segments = segments[:segment_skip_index+1]
|
191 |
-
skipped_segments = segments[segment_skip_index:]
|
192 |
-
|
193 |
-
markers = ALL_MARKERS
|
194 |
-
for idx, seg in enumerate(skipped_segments):
|
195 |
-
left_segments.append(seg)
|
196 |
-
if seg.text and seg.text[-1] in markers:
|
197 |
-
split_index = int(seg.t1 / 100 * sample_rate)
|
198 |
-
is_sentence_end = bool(SENTENCE_END_PATTERN.search(seg.text))
|
199 |
-
right_segments = skipped_segments[min(idx+1, len(skipped_segments)):]
|
200 |
-
break
|
201 |
-
left_segments = skip_segments+ left_segments
|
202 |
-
return split_index, left_segments, right_segments, is_sentence_end
|
203 |
-
|
204 |
-
@staticmethod
|
205 |
-
def split_by_sequences(
|
206 |
-
segments: List[TranscriptSegment],
|
207 |
-
sample_rate: int = 16000
|
208 |
-
) -> Tuple[int, Iterator[TranscriptSegment], Iterator[TranscriptSegment], bool]:
|
209 |
-
"""
|
210 |
-
对于长文本,按照句子组保留最新的两句
|
211 |
-
|
212 |
-
Returns:
|
213 |
-
(分割索引, 左侧片段, 右侧片段, 是否为句子结束)
|
214 |
-
"""
|
215 |
-
sequences = TranscriptionSplitter.group_by_sentences(segments)
|
216 |
-
|
217 |
-
if len(sequences) > 2:
|
218 |
-
logger.info(f"Buffer clip via sequence, current length: {len(sequences)}")
|
219 |
-
left_segments = chain(*sequences[:-2])
|
220 |
-
right_segments = chain(*sequences[-2:])
|
221 |
-
|
222 |
-
# 确定切分点
|
223 |
-
last_sequence = sequences[-3]
|
224 |
-
last_segment = last_sequence[-1]
|
225 |
-
split_index = int(last_segment.t1 / 100 * sample_rate)
|
226 |
-
|
227 |
-
return split_index, left_segments, right_segments, True
|
228 |
-
|
229 |
-
return 0, iter([]), iter(segments), False
|
230 |
-
|
231 |
-
|
232 |
-
class TranscriptionStabilizer(TranscriptionSplitter):
|
233 |
-
"""
|
234 |
-
转录结果稳定器,负责确认和管理转录片段
|
235 |
-
"""
|
236 |
-
def __init__(self, sample_rate: int = 16000):
|
237 |
-
self.text_manager = TranscriptionManager()
|
238 |
-
self.sample_rate = sample_rate
|
239 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
240 |
@property
|
241 |
-
def
|
242 |
-
|
|
|
243 |
|
|
|
|
|
|
|
|
|
244 |
|
245 |
@property
|
246 |
-
def
|
247 |
-
|
248 |
-
|
|
|
249 |
|
250 |
@property
|
251 |
-
def
|
252 |
-
return self.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
253 |
|
254 |
-
@property
|
255 |
-
def stable_string(self):
|
256 |
-
return self.text_manager.current_sentence
|
257 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
258 |
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
Args:
|
264 |
-
segments: 转录片段列表
|
265 |
-
|
266 |
-
Returns:
|
267 |
-
(音频分割点索引, 是否达到足够长度需要换行)
|
268 |
-
"""
|
269 |
-
# 查找第一个包含标点的片段作为分割点
|
270 |
-
split_index = None
|
271 |
-
stable_segments = []
|
272 |
-
force_split = False
|
273 |
-
if len(segments) < 20:
|
274 |
-
remaining_text = join_segment_text(segments)
|
275 |
-
self.text_manager.update_temp(remaining_text)
|
276 |
-
return split_index, False, join_segment_text(segments), self.text_manager.remaining_text
|
277 |
-
|
278 |
-
# 查找20个长度后的标点符号
|
279 |
-
split_index, left_segments, right_segments, is_sentence_end = self.split_by_punctuation(segments[20:],sample_rate=self.sample_rate)
|
280 |
-
|
281 |
-
if split_index is not None: # 找到标点,确认标点前的内容
|
282 |
-
stable_text = join_segment_text(left_segments)
|
283 |
-
self.text_manager.update_temp(stable_text).commit_sentence()
|
284 |
-
|
285 |
-
# 更新剩余文本
|
286 |
-
remaining_text = join_segment_text(right_segments)
|
287 |
-
self.text_manager.update_temp(remaining_text)
|
288 |
else:
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
import logging
|
4 |
from difflib import SequenceMatcher
|
5 |
from itertools import chain
|
6 |
+
from dataclasses import dataclass, field
|
7 |
+
from typing import List, Tuple, Optional, Deque, Any, Iterator,Literal
|
8 |
+
from config import SENTENCE_END_MARKERS, ALL_MARKERS,SENTENCE_END_PATTERN,REGEX_MARKERS, PAUSEE_END_PATTERN,SAMPLE_RATE
|
9 |
import numpy as np
|
10 |
+
from enum import Enum
|
11 |
logger = logging.getLogger("TranscriptionStrategy")
|
12 |
|
13 |
|
14 |
+
class SplitMode(Enum):
|
15 |
+
PUNCTUATION = "punctuation"
|
16 |
+
PAUSE = "pause"
|
17 |
+
END = "end"
|
18 |
+
|
19 |
+
|
20 |
+
|
21 |
+
@dataclass
|
22 |
+
class TranscriptResult:
|
23 |
+
seg_id: int = 0
|
24 |
+
cut_index: int = 0
|
25 |
+
is_end_sentence: bool = False
|
26 |
+
context: str = ""
|
27 |
+
|
28 |
+
def partial(self):
|
29 |
+
return not self.is_end_sentence
|
30 |
+
|
31 |
@dataclass
|
32 |
+
class TranscriptToken:
|
33 |
"""表示一个转录片段,包含文本和时间信息"""
|
34 |
+
text: str # 转录的文本内容
|
35 |
t0: float # 开始时间(百分之一秒)
|
36 |
t1: float # 结束时间(百分之一秒)
|
37 |
|
38 |
+
def is_punctuation(self):
|
39 |
+
"""检查文本是否包含标点符号"""
|
40 |
+
return REGEX_MARKERS.search(self.text) is not None
|
41 |
+
|
42 |
+
def is_end(self):
|
43 |
+
"""检查文本是否为句子结束标记"""
|
44 |
+
return SENTENCE_END_PATTERN.search(self.text) is not None
|
45 |
+
|
46 |
+
def is_pause(self):
|
47 |
+
"""检查文本是否为暂停标记"""
|
48 |
+
return PAUSEE_END_PATTERN.search(self.text) is not None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
+
def buffer_index(self) -> int:
|
51 |
+
return int(self.t1 / 100 * SAMPLE_RATE)
|
52 |
|
53 |
+
@dataclass
|
54 |
+
class TranscriptChunk:
|
55 |
+
"""表示一组转录片段,支持分割和比较操作"""
|
56 |
+
separator: str = "" # 用于连接片段的分隔符
|
57 |
+
items: list[TranscriptToken] = field(default_factory=list) # 转录片段列表
|
|
|
58 |
|
59 |
@staticmethod
|
60 |
def _calculate_similarity(text1: str, text2: str) -> float:
|
61 |
"""计算两段文本的相似度"""
|
62 |
return SequenceMatcher(None, text1, text2).ratio()
|
63 |
|
64 |
+
def split_by(self, mode: SplitMode) -> list['TranscriptChunk']:
|
65 |
+
"""根据文本中的标点符号分割片段列表"""
|
66 |
+
if mode == SplitMode.PUNCTUATION:
|
67 |
+
indexes = [i for i, seg in enumerate(self.items) if seg.is_punctuation()]
|
68 |
+
elif mode == SplitMode.PAUSE:
|
69 |
+
indexes = [i for i, seg in enumerate(self.items) if seg.is_pause()]
|
70 |
+
elif mode == SplitMode.END:
|
71 |
+
indexes = [i for i, seg in enumerate(self.items) if seg.is_end()]
|
72 |
+
else:
|
73 |
+
raise ValueError(f"Unsupported mode: {mode}")
|
74 |
|
75 |
+
# 每个切分点向后移一个索引,表示“分隔符归前段”
|
76 |
+
cut_points = [0] + sorted(i + 1 for i in indexes) + [len(self.items)]
|
77 |
+
return [
|
78 |
+
TranscriptChunk(items=self.items[start:end], separator=self.separator)
|
79 |
+
for start, end in zip(cut_points, cut_points[1:])
|
80 |
+
]
|
81 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
|
83 |
+
def get_split_first_rest(self, mode: SplitMode):
|
84 |
+
chunks = self.split_by(mode)
|
85 |
+
fisrt_chunk = chunks[0] if chunks else self
|
86 |
+
rest_chunks = chunks[1:] if chunks else []
|
87 |
+
return fisrt_chunk, rest_chunks
|
88 |
|
89 |
+
def puncation_numbers(self) -> int:
|
90 |
+
"""计算片段中标点符号的数量"""
|
91 |
+
return sum(1 for seg in self.items if REGEX_MARKERS.search(seg.text))
|
92 |
+
|
93 |
+
def length(self) -> int:
|
94 |
+
"""返回片段列表的长度"""
|
95 |
+
return len(self.items)
|
96 |
+
|
97 |
+
def join(self) -> str:
|
98 |
+
"""将片段连接为一个字符串"""
|
99 |
+
return self.separator.join(seg.text for seg in self.items)
|
100 |
|
101 |
+
def compare(self, chunk: Optional['TranscriptChunk'] = None) -> float:
|
102 |
+
"""比较当前片段与另一个片段的相似度"""
|
103 |
+
if not chunk:
|
104 |
+
return 0
|
105 |
+
return self._calculate_similarity(self.join(), chunk.join())
|
106 |
|
107 |
+
def has_punctuation(self) -> bool:
|
108 |
+
return any(seg.is_punctuation() for seg in self.items)
|
|
|
|
|
109 |
|
110 |
+
def get_buffer_index(self) -> int:
|
111 |
+
return self.items[-1].buffer_index()
|
|
|
|
|
112 |
|
113 |
+
def is_end_sentence(self) ->bool:
|
114 |
+
return self.items[-1].is_end()
|
115 |
+
|
116 |
+
|
117 |
+
class TranscriptHistory:
|
118 |
+
"""管理转录片段的历史记录"""
|
119 |
+
|
120 |
+
def __init__(self) -> None:
|
121 |
+
self.history = collections.deque(maxlen=2) # 存储最近的两个片段
|
122 |
|
123 |
+
def add(self, chunk: TranscriptChunk):
|
124 |
+
"""添加新的片段到历史记录"""
|
125 |
+
self.history.appendleft(chunk)
|
126 |
+
|
127 |
+
def previous_chunk(self) -> Optional[TranscriptChunk]:
|
128 |
+
"""获取上一个片段(如果存在)"""
|
129 |
+
return self.history[1] if len(self.history) == 2 else None
|
130 |
+
|
131 |
+
def lastest_chunk(self):
|
132 |
+
"""获取最后一个片段"""
|
133 |
+
return self.history[-1]
|
134 |
+
|
135 |
+
|
136 |
+
class TranscriptBuffer:
|
137 |
+
"""
|
138 |
+
管理转录文本的分级结构:临时字符串 -> 短句 -> 完整段落
|
139 |
+
|
140 |
+
|-- 已确认文本 --|-- 观察窗口 --|-- 新输入 --|
|
141 |
+
|
142 |
+
管理 pending -> line -> paragraph 的缓冲逻辑
|
143 |
+
|
144 |
+
"""
|
145 |
+
|
146 |
+
def __init__(self):
|
147 |
+
self._segments: List[str] = [] # 确认的完整段落
|
148 |
+
self._sentences: List[str] = [] # 当前段落中的短句
|
149 |
+
self._buffer: str = "" # 当前缓冲中的文本
|
150 |
+
|
151 |
+
def update_pending_text(self, text: str) -> None:
|
152 |
+
"""更新临时缓冲字符串"""
|
153 |
+
self._buffer = text
|
154 |
+
|
155 |
+
def commit_line(self) -> None:
|
156 |
+
"""将缓冲字符串提交为短句"""
|
157 |
+
if self._buffer:
|
158 |
+
self._sentences.append(self._buffer)
|
159 |
+
self._buffer = ""
|
160 |
+
|
161 |
+
def commit_paragraph(self, end_of_sentence: bool = False) -> None:
|
162 |
"""
|
163 |
+
提交当前短句为完整段落(如句子结束)
|
164 |
|
165 |
Args:
|
166 |
+
end_of_sentence: 是否为句子结尾(如检测到句号)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
167 |
"""
|
168 |
+
self.commit_line()
|
169 |
+
if end_of_sentence and self._sentences:
|
170 |
+
self._segments.append("".join(self._sentences))
|
171 |
+
self._sentences.clear()
|
172 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
173 |
|
174 |
+
def update_and_commit(self, stable_string: str, remaining_string:str, is_end_sentence=False):
|
175 |
+
self.update_pending_text(stable_string)
|
176 |
+
if is_end_sentence:
|
177 |
+
self.commit_paragraph(end_of_sentence=True)
|
178 |
+
else:
|
179 |
+
self.commit_line()
|
180 |
+
self.update_pending_text(remaining_string)
|
181 |
+
|
182 |
+
def get_seg_id(self) -> int:
|
183 |
+
return len(self._segments)
|
184 |
+
|
185 |
@property
|
186 |
+
def paragraph(self) -> str:
|
187 |
+
"""当前短句组合"""
|
188 |
+
return "".join(self._sentences)
|
189 |
|
190 |
+
@property
|
191 |
+
def pending_text(self) -> str:
|
192 |
+
"""当前缓冲内容"""
|
193 |
+
return self._buffer
|
194 |
|
195 |
@property
|
196 |
+
def latest_paragraph(self) -> str:
|
197 |
+
"""最新确认的段落"""
|
198 |
+
return self._segments[-1] if self._segments else ""
|
199 |
+
|
200 |
|
201 |
@property
|
202 |
+
def current_not_commit_text(self) -> str:
|
203 |
+
return self.paragraph + self.pending_text
|
204 |
+
|
205 |
+
|
206 |
+
|
207 |
+
class TranscriptStabilityAnalyzer:
|
208 |
+
def __init__(self) -> None:
|
209 |
+
self._transcript_buffer = TranscriptBuffer()
|
210 |
+
self._transcript_history = TranscriptHistory()
|
211 |
+
|
212 |
+
def merge_chunks(self, chunks: List[TranscriptChunk])->str:
|
213 |
+
return "".join(r.join() for r in chunks)
|
214 |
|
|
|
|
|
|
|
215 |
|
216 |
+
def analysis(self, separator, current: TranscriptChunk, buffer_duration: float) -> Iterator[TranscriptResult]:
|
217 |
+
current = TranscriptChunk(items=current, separator=separator)
|
218 |
+
self._transcript_history.add(current)
|
219 |
+
|
220 |
+
prev = self._transcript_history.previous_chunk()
|
221 |
+
|
222 |
+
if not prev:
|
223 |
+
yield TranscriptResult(context=current.join())
|
224 |
+
return
|
225 |
|
226 |
+
self._transcript_buffer.update_pending_text(current.join())
|
227 |
+
|
228 |
+
if buffer_duration <= 12:
|
229 |
+
yield from self._handle_short_buffer(current, prev)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
230 |
else:
|
231 |
+
yield from self._handle_long_buffer(current)
|
232 |
+
|
233 |
+
|
234 |
+
def _handle_short_buffer(self, curr: TranscriptChunk, prev: TranscriptChunk) -> Iterator[TranscriptResult]:
|
235 |
+
curr_first, curr_rest = curr.get_split_first_rest(SplitMode.PUNCTUATION)
|
236 |
+
prev_first, _ = prev.get_split_first_rest(SplitMode.PUNCTUATION)
|
237 |
+
core = curr_first.compare(prev_first)
|
238 |
+
has_punctuation = curr_first.has_punctuation()
|
239 |
+
logger.debug(f"Compare with rev score:{core},is end :{curr_first.is_end_sentence()}, has_punctuation: {has_punctuation}, current_first: {curr_first.join()},")
|
240 |
+
if core >= 0.8:
|
241 |
+
yield from self._yield_commit_results(curr_first, curr_rest, curr_first.is_end_sentence())
|
242 |
+
else:
|
243 |
+
yield TranscriptResult(
|
244 |
+
seg_id=self._transcript_buffer.get_seg_id(),
|
245 |
+
context=self._transcript_buffer.current_not_commit_text
|
246 |
+
)
|
247 |
+
|
248 |
+
|
249 |
+
def _handle_long_buffer(self, curr: TranscriptChunk) -> Iterator[TranscriptResult]:
|
250 |
+
chunks = curr.split_by(SplitMode.PUNCTUATION)
|
251 |
+
if len(chunks) > 2:
|
252 |
+
stable, remaining = chunks[:-2], chunks[-2:]
|
253 |
+
stable_str = self.merge_chunks(stable)
|
254 |
+
remaining_str = self.merge_chunks(remaining)
|
255 |
+
yield from self._yield_commit_results(
|
256 |
+
stable[-1], remaining, is_end_sentence=True # 暂时硬编码为True
|
257 |
+
)
|
258 |
+
else:
|
259 |
+
yield TranscriptResult(
|
260 |
+
seg_id=self._transcript_buffer.get_seg_id(),
|
261 |
+
context=self._transcript_buffer.current_not_commit_text
|
262 |
+
)
|
263 |
+
|
264 |
+
|
265 |
+
def _yield_commit_results(self, stable_chunk, remaining_chunks, is_end_sentence: bool) -> Iterator[TranscriptResult]:
|
266 |
+
stable_str = stable_chunk.join() if hasattr(stable_chunk, "join") else self.merge_chunks([stable_chunk])
|
267 |
+
remaining_str = self.merge_chunks(remaining_chunks)
|
268 |
+
|
269 |
+
frame_cut_index = stable_chunk.get_buffer_index()
|
270 |
+
logger.debug(f"Current cut index: {frame_cut_index}, Stable string: {stable_str}, Remaining_str:{remaining_str}")
|
271 |
+
|
272 |
+
prev_seg_id = self._transcript_buffer.get_seg_id()
|
273 |
+
self._transcript_buffer.update_and_commit(stable_str, remaining_str, is_end_sentence)
|
274 |
+
curr_seg_id = self._transcript_buffer.get_seg_id()
|
275 |
+
|
276 |
+
logger.debug(f"current buffer: {self._transcript_buffer.__dict__}")
|
277 |
+
|
278 |
+
if curr_seg_id > prev_seg_id:
|
279 |
+
# 表示生成了一个新段落
|
280 |
+
yield TranscriptResult(
|
281 |
+
seg_id=prev_seg_id,
|
282 |
+
cut_index=frame_cut_index,
|
283 |
+
context=self._transcript_buffer.latest_paragraph,
|
284 |
+
is_end_sentence=True
|
285 |
+
)
|
286 |
+
|
287 |
+
# 如果还有挂起的文本
|
288 |
+
if (pending_text := self._transcript_buffer.pending_text.strip()):
|
289 |
+
yield TranscriptResult(
|
290 |
+
seg_id=self._transcript_buffer.get_seg_id(),
|
291 |
+
cut_index=frame_cut_index,
|
292 |
+
context=pending_text
|
293 |
+
)
|
transcribe/whisper_llm_serve.py
CHANGED
@@ -13,12 +13,7 @@ from .server import ServeClientBase
|
|
13 |
from .utils import log_block, save_to_wave
|
14 |
from .translatepipes import TranslatePipes
|
15 |
from .strategy import (
|
16 |
-
|
17 |
-
TranscriptionManager,
|
18 |
-
TranscriptionSplitter,
|
19 |
-
TranscriptSegment,
|
20 |
-
TranscriptionStabilizer,
|
21 |
-
join_segment_text)
|
22 |
|
23 |
logger = getLogger("TranscriptionService")
|
24 |
|
@@ -34,8 +29,7 @@ class WhisperTranscriptionService(ServeClientBase):
|
|
34 |
self.target_language = dst_lang # 目标翻译语言
|
35 |
|
36 |
# 转录结果稳定性管理
|
37 |
-
self.
|
38 |
-
self._transcription_manager = TranscriptionManager()
|
39 |
self._translate_pipe = pipe
|
40 |
|
41 |
# 音频处理相关
|
@@ -56,7 +50,6 @@ class WhisperTranscriptionService(ServeClientBase):
|
|
56 |
self.translate_thread = self._start_thread(self._transcription_processing_loop)
|
57 |
self.frame_processing_thread = self._start_thread(self._frame_processing_loop)
|
58 |
|
59 |
-
self.text_stablizer = TranscriptionStabilizer()
|
60 |
|
61 |
def _start_thread(self, target_function) -> threading.Thread:
|
62 |
"""启动守护线程执行指定函数"""
|
@@ -138,7 +131,7 @@ class WhisperTranscriptionService(ServeClientBase):
|
|
138 |
|
139 |
return frames.copy()
|
140 |
|
141 |
-
def _transcribe_audio(self, audio_buffer: np.ndarray) -> List[
|
142 |
"""转录音频并返回转录片段"""
|
143 |
log_block("Audio buffer length", f"{audio_buffer.shape[0]/self.sample_rate:.2f}", "s")
|
144 |
start_time = time.perf_counter()
|
@@ -149,7 +142,10 @@ class WhisperTranscriptionService(ServeClientBase):
|
|
149 |
log_block("Whisper transcription output", f"{''.join(seg.text for seg in segments)}", "")
|
150 |
log_block("Whisper transcription time", f"{(time.perf_counter() - start_time):.3f}", "s")
|
151 |
|
152 |
-
return
|
|
|
|
|
|
|
153 |
|
154 |
def _translate_text(self, text: str) -> str:
|
155 |
"""将文本翻译为目标语言"""
|
@@ -167,66 +163,7 @@ class WhisperTranscriptionService(ServeClientBase):
|
|
167 |
|
168 |
return translated_text
|
169 |
|
170 |
-
def _find_best_split_position(self, segments: list, target_length: int = 20) -> int:
|
171 |
-
"""找到最适合分割的位置,尽量靠近目标长度且在词/字的边界"""
|
172 |
-
if len(segments) <= target_length:
|
173 |
-
return 0
|
174 |
-
|
175 |
-
# 从目标长度位置向前搜索适合的分割点
|
176 |
-
for i in range(target_length, min(target_length + 10, len(segments))):
|
177 |
-
# 对于中文,每个字符都可以作为分割点
|
178 |
-
# 对于英文,在空格处分割
|
179 |
-
if self.source_language == "zh" or segments[i] == " ":
|
180 |
-
return i
|
181 |
-
|
182 |
-
# 如果找不到理想分割点,就在目标长度处分割
|
183 |
-
return target_length
|
184 |
-
|
185 |
-
def _analyze_segments(self, segments: List[TranscriptSegment], audio_buffer: np.ndarray) -> Tuple[Optional[int], str, str, bool]:
|
186 |
-
"""
|
187 |
-
分析转录片段,确定稳定部分和需要继续观察的部分
|
188 |
-
|
189 |
-
Returns:
|
190 |
-
(分割索引, 左侧稳定文本, 右侧观察文本, 是否为句子结束)
|
191 |
-
"""
|
192 |
-
# 尝试基于标点符号进行分割
|
193 |
-
left_idx, left_segments, right_segments, is_end = TranscriptionSplitter.split_by_punctuation(
|
194 |
-
segments, audio_buffer, self.sample_rate
|
195 |
-
)
|
196 |
-
|
197 |
-
left_text = join_segment_text(left_segments, self.text_separator)
|
198 |
-
right_text = join_segment_text(right_segments, self.text_separator)
|
199 |
-
|
200 |
-
# 如果找到分割点,检查左侧文本稳定性
|
201 |
-
if left_idx != 0:
|
202 |
-
self._text_stability_buffer.add_entry(left_text, left_idx)
|
203 |
-
stable_idx = self._text_stability_buffer.get_stable_index()
|
204 |
-
if stable_idx:
|
205 |
-
should_break = True if (self._transcription_manager.sentence_length>= 20) else False
|
206 |
-
return stable_idx, left_text, right_text, should_break
|
207 |
-
|
208 |
-
# 如果基于标点的方法没有找到稳定点,尝试检查句子的长度
|
209 |
-
if len(segments) >= 20: # 设置更长的阈值,确保有足够内容进行分割
|
210 |
-
# 尝试在约20字符处找一个词的边界进行分割
|
211 |
-
split_pos = self._find_best_split_position(segments)
|
212 |
-
if split_pos > 0:
|
213 |
-
left_text = join_segment_text(segments[:split_pos], self.text_separator)
|
214 |
-
right_text = join_segment_text(segments[split_pos:], self.text_separator)
|
215 |
-
audio_pos = int(segments[split_pos].t1 / 100 * self.sample_rate)
|
216 |
-
return audio_pos, left_text, right_text, True
|
217 |
|
218 |
-
# 如果基于标点的方法未找到稳定点,尝试基于句子序列的方法
|
219 |
-
left_idx, left_segments, right_segments, is_end = TranscriptionSplitter.split_by_sequences(
|
220 |
-
segments, self.sample_rate
|
221 |
-
)
|
222 |
-
|
223 |
-
if left_idx != 0:
|
224 |
-
left_text = join_segment_text(left_segments, self.text_separator)
|
225 |
-
right_text = join_segment_text(right_segments, self.text_separator)
|
226 |
-
return left_idx, left_text, right_text, is_end
|
227 |
-
|
228 |
-
# 如果都没有找到分割点
|
229 |
-
return None, left_text, right_text, is_end
|
230 |
|
231 |
def _transcription_processing_loop(self) -> None:
|
232 |
"""主转录处理循环"""
|
@@ -248,79 +185,49 @@ class WhisperTranscriptionService(ServeClientBase):
|
|
248 |
time.sleep(0.2)
|
249 |
continue
|
250 |
|
251 |
-
c+= 1
|
252 |
-
save_to_wave(f"dev-{c}.wav", audio_buffer)
|
253 |
|
254 |
# try:
|
255 |
segments = self._transcribe_audio(audio_buffer)
|
256 |
|
257 |
# 处理转录结果并发送到客户端
|
258 |
for result in self._process_transcription_results(segments, audio_buffer):
|
|
|
259 |
self._send_result_to_client(result)
|
260 |
|
261 |
# except Exception as e:
|
262 |
# logger.error(f"Error processing audio: {e}")
|
263 |
|
264 |
-
def _process_transcription_results(self, segments: List[
|
265 |
"""
|
266 |
处理转录结果,生成翻译结果
|
267 |
|
268 |
Returns:
|
269 |
TransResult对象的迭代器
|
270 |
"""
|
271 |
-
|
272 |
-
|
273 |
-
if not full_text:
|
274 |
return
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
# 提交稳定的文本
|
283 |
-
log_block("Stable transcription", f"{stable_text}")
|
284 |
|
285 |
-
|
286 |
-
|
287 |
-
segment_text = self.text_stablizer.latest_segment
|
288 |
-
segment_id = self.text_stablizer.segment_count - 1
|
289 |
-
|
290 |
-
# 生成已确认句子的翻译结果
|
291 |
-
yield TransResult(
|
292 |
-
seg_id=segment_id,
|
293 |
-
context=segment_text,
|
294 |
-
from_=self.source_language,
|
295 |
-
to=self.target_language,
|
296 |
-
tran_content=self._translate_text(segment_text),
|
297 |
-
partial=False
|
298 |
-
)
|
299 |
-
|
300 |
-
# 如果还有剩余部分,生成临时翻译结果
|
301 |
-
if self.text_stablizer.remaining_text.strip():
|
302 |
-
yield TransResult(
|
303 |
-
seg_id=segment_id + 1,
|
304 |
-
context=self.text_stablizer.remaining_text,
|
305 |
-
from_=self.source_language,
|
306 |
-
to=self.target_language,
|
307 |
-
tran_content=self._translate_text(self.text_stablizer.remaining_text.strip()),
|
308 |
-
partial=True
|
309 |
-
)
|
310 |
-
else:
|
311 |
-
# 没有找到稳定点,发送当前所有内容的临时翻译结果
|
312 |
-
segment_id = self.text_stablizer.segment_count
|
313 |
-
current_text = self.text_stablizer.stable_string + self.text_stablizer.remaining_text
|
314 |
-
|
315 |
yield TransResult(
|
316 |
-
seg_id=
|
317 |
-
context=
|
318 |
from_=self.source_language,
|
319 |
to=self.target_language,
|
320 |
-
tran_content=
|
321 |
-
partial=
|
322 |
)
|
323 |
|
|
|
324 |
def _send_result_to_client(self, result: TransResult) -> None:
|
325 |
"""发送翻译结果到客户端"""
|
326 |
try:
|
|
|
13 |
from .utils import log_block, save_to_wave
|
14 |
from .translatepipes import TranslatePipes
|
15 |
from .strategy import (
|
16 |
+
TranscriptStabilityAnalyzer, TranscriptToken)
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
logger = getLogger("TranscriptionService")
|
19 |
|
|
|
29 |
self.target_language = dst_lang # 目标翻译语言
|
30 |
|
31 |
# 转录结果稳定性管理
|
32 |
+
self._transcrible_analysis = TranscriptStabilityAnalyzer()
|
|
|
33 |
self._translate_pipe = pipe
|
34 |
|
35 |
# 音频处理相关
|
|
|
50 |
self.translate_thread = self._start_thread(self._transcription_processing_loop)
|
51 |
self.frame_processing_thread = self._start_thread(self._frame_processing_loop)
|
52 |
|
|
|
53 |
|
54 |
def _start_thread(self, target_function) -> threading.Thread:
|
55 |
"""启动守护线程执行指定函数"""
|
|
|
131 |
|
132 |
return frames.copy()
|
133 |
|
134 |
+
def _transcribe_audio(self, audio_buffer: np.ndarray) -> List[TranscriptToken]:
|
135 |
"""转录音频并返回转录片段"""
|
136 |
log_block("Audio buffer length", f"{audio_buffer.shape[0]/self.sample_rate:.2f}", "s")
|
137 |
start_time = time.perf_counter()
|
|
|
142 |
log_block("Whisper transcription output", f"{''.join(seg.text for seg in segments)}", "")
|
143 |
log_block("Whisper transcription time", f"{(time.perf_counter() - start_time):.3f}", "s")
|
144 |
|
145 |
+
return [
|
146 |
+
TranscriptToken(text=s.text, t0=s.t0, t1=s.t1)
|
147 |
+
for s in segments
|
148 |
+
]
|
149 |
|
150 |
def _translate_text(self, text: str) -> str:
|
151 |
"""将文本翻译为目标语言"""
|
|
|
163 |
|
164 |
return translated_text
|
165 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
166 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
167 |
|
168 |
def _transcription_processing_loop(self) -> None:
|
169 |
"""主转录处理循环"""
|
|
|
185 |
time.sleep(0.2)
|
186 |
continue
|
187 |
|
188 |
+
# c+= 1
|
189 |
+
# save_to_wave(f"dev-{c}.wav", audio_buffer)
|
190 |
|
191 |
# try:
|
192 |
segments = self._transcribe_audio(audio_buffer)
|
193 |
|
194 |
# 处理转录结果并发送到客户端
|
195 |
for result in self._process_transcription_results(segments, audio_buffer):
|
196 |
+
print(result)
|
197 |
self._send_result_to_client(result)
|
198 |
|
199 |
# except Exception as e:
|
200 |
# logger.error(f"Error processing audio: {e}")
|
201 |
|
202 |
+
def _process_transcription_results(self, segments: List[TranscriptToken], audio_buffer: np.ndarray) -> Iterator[TransResult]:
|
203 |
"""
|
204 |
处理转录结果,生成翻译结果
|
205 |
|
206 |
Returns:
|
207 |
TransResult对象的迭代器
|
208 |
"""
|
209 |
+
|
210 |
+
if not segments:
|
|
|
211 |
return
|
212 |
+
|
213 |
+
for ana_result in self._transcrible_analysis.analysis(
|
214 |
+
self.text_separator,segments, len(audio_buffer)/self.sample_rate):
|
215 |
+
if (cut_index :=ana_result.cut_index)>0:
|
216 |
+
# 更新音频缓冲区,移除已处理部分
|
217 |
+
self._update_audio_buffer(cut_index)
|
|
|
|
|
|
|
218 |
|
219 |
+
translated_context = self._translate_text(ana_result.context)
|
220 |
+
log_block("Translated context:", translated_context)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
221 |
yield TransResult(
|
222 |
+
seg_id=ana_result.seg_id,
|
223 |
+
context=ana_result.context,
|
224 |
from_=self.source_language,
|
225 |
to=self.target_language,
|
226 |
+
tran_content=translated_context,
|
227 |
+
partial=ana_result.partial()
|
228 |
)
|
229 |
|
230 |
+
|
231 |
def _send_result_to_client(self, result: TransResult) -> None:
|
232 |
"""发送翻译结果到客户端"""
|
233 |
try:
|