Mit1208 commited on
Commit
5fb6a8d
1 Parent(s): 894bf53

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +93 -0
README.md ADDED
@@ -0,0 +1,93 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-nc-sa-4.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - doc_lay_net-small
7
+ metrics:
8
+ - precision
9
+ - recall
10
+ - f1
11
+ - accuracy
12
+ model-index:
13
+ - name: layoutlmv3-finetuned-DocLayNet
14
+ results:
15
+ - task:
16
+ name: Token Classification
17
+ type: token-classification
18
+ dataset:
19
+ name: doc_lay_net-small
20
+ type: doc_lay_net-small
21
+ config: DocLayNet_2022.08_processed_on_2023.01
22
+ split: test
23
+ args: DocLayNet_2022.08_processed_on_2023.01
24
+ metrics:
25
+ - name: Precision
26
+ type: precision
27
+ value: 0.6178861788617886
28
+ - name: Recall
29
+ type: recall
30
+ value: 0.7238095238095238
31
+ - name: F1
32
+ type: f1
33
+ value: 0.6666666666666667
34
+ - name: Accuracy
35
+ type: accuracy
36
+ value: 0.8719611021069692
37
+ ---
38
+
39
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
40
+ should probably proofread and complete it, then remove this comment. -->
41
+
42
+ # layoutlmv3-finetuned-DocLayNet
43
+
44
+ This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the doc_lay_net-small dataset.
45
+ It achieves the following results on the evaluation set:
46
+ - Loss: 0.5644
47
+ - Precision: 0.6179
48
+ - Recall: 0.7238
49
+ - F1: 0.6667
50
+ - Accuracy: 0.8720
51
+
52
+ ## Model description
53
+
54
+ More information needed
55
+
56
+ ## Intended uses & limitations
57
+
58
+ More information needed
59
+
60
+ ## Training and evaluation data
61
+
62
+ More information needed
63
+
64
+ ## Training procedure
65
+
66
+ ### Training hyperparameters
67
+
68
+ The following hyperparameters were used during training:
69
+ - learning_rate: 1e-05
70
+ - train_batch_size: 2
71
+ - eval_batch_size: 4
72
+ - seed: 42
73
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
74
+ - lr_scheduler_type: linear
75
+ - training_steps: 1000
76
+
77
+ ### Training results
78
+
79
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
80
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
81
+ | 1.3383 | 0.58 | 200 | 0.8358 | 0.3007 | 0.4381 | 0.3566 | 0.7724 |
82
+ | 0.8308 | 1.16 | 400 | 0.6735 | 0.4634 | 0.5429 | 0.5 | 0.8084 |
83
+ | 0.518 | 1.74 | 600 | 0.5706 | 0.5373 | 0.6857 | 0.6025 | 0.8399 |
84
+ | 0.3856 | 2.33 | 800 | 0.6303 | 0.6032 | 0.7238 | 0.6580 | 0.8648 |
85
+ | 0.2558 | 2.91 | 1000 | 0.5644 | 0.6179 | 0.7238 | 0.6667 | 0.8720 |
86
+
87
+
88
+ ### Framework versions
89
+
90
+ - Transformers 4.27.3
91
+ - Pytorch 1.13.1+cu116
92
+ - Datasets 2.10.1
93
+ - Tokenizers 0.13.2