datasets: | |
- monology/pile-uncopyrighted | |
- MiniLLM/pile-diff_samp-qwen_1.8B-qwen_104M-r0.5 | |
language: | |
- en | |
library_name: transformers | |
license: apache-2.0 | |
metrics: | |
- accuracy | |
pipeline_tag: text-generation | |
# MiniPLM-llama3.1-212M | |
[paper](https://arxiv.org/abs/2410.17215) | [code](https://github.com/thu-coai/MiniPLM) | |
**MiniPLM-llama3.1-212M** is a 212M model with the [LLaMA3.1 achitecture](https://arxiv.org/abs/2407.21783) pre-trained from scratch on [the Pile](https://huggingface.co/datasets/monology/pile-uncopyrighted) using the MiniPLM knowledge distillation framework with the [offcial Qwen1.5-1.8B](https://huggingface.co/Qwen/Qwen1.5-1.8B) as the teacher model. | |
This model shows the flexibility of the MiniPLM framework in conducting knowledge distillation across model families. | |
We also open-source the [pre-training corpus](https://huggingface.co/datasets/MiniLLM/pile-diff_samp-qwen_1.8B-qwen_104M-r0.5) refined by Difference Sampling in MiniPLM for reproducibility. | |
<p align='left'> | |
<img src="https://cdn-uploads.huggingface.co/production/uploads/624ac662102fcdff87be51b9/2BqT0NgkmIXYlktovw9kG.png" width="1000"> | |
</p> | |
## Evaluation | |
MiniPLM models achieves better performance given the same computation and scales well across model sizes: | |
<p align='left'> | |
<img src="https://cdn-uploads.huggingface.co/production/uploads/624ac662102fcdff87be51b9/EOYzajQcwQFT5PobqL3j0.png" width="1000"> | |
</p> | |
## Baseline Models | |
+ [Conventional Pre-Training](https://huggingface.co/MiniLLM/Pretrain-LLama3.1-130M) | |
## Citation | |
```bibtex | |
@article{miniplm, | |
title={MiniPLM: Knowledge Distillation for Pre-Training Language Models}, | |
author={Yuxian Gu and Hao Zhou and Fandong Meng and Jie Zhou and Minlie Huang}, | |
journal={arXiv preprint arXiv:2410.17215}, | |
year={2024} | |
} | |
``` |