File size: 1,814 Bytes
bae4db1
 
 
 
5ec1313
bae4db1
 
 
5ec1313
 
 
 
 
bae4db1
 
 
 
 
 
 
 
 
 
5ec1313
 
 
 
 
 
 
 
 
 
 
bae4db1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
---
license: apache-2.0
base_model: Minbyul/biomistral-7b-wo-kqa_golden-iter-dpo-step1
tags:
- alignment-handbook
- trl
- dpo
- generated_from_trainer
- trl
- dpo
- generated_from_trainer
datasets:
- HuggingFaceH4/ultrafeedback_binarized
model-index:
- name: biomistral-7b-wo-kqa_golden-iter-dpo-step2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# biomistral-7b-wo-kqa_golden-iter-dpo-step2

This model is a fine-tuned version of [Minbyul/biomistral-7b-wo-kqa_golden-iter-dpo-step1](https://huggingface.co/Minbyul/biomistral-7b-wo-kqa_golden-iter-dpo-step1) on the HuggingFaceH4/ultrafeedback_binarized dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6909
- Rewards/chosen: 0.0063
- Rewards/rejected: 0.0057
- Rewards/accuracies: 0.5625
- Rewards/margins: 0.0006
- Logps/rejected: -193.8717
- Logps/chosen: -168.4928
- Logits/rejected: -2.2060
- Logits/chosen: -2.9391

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-07
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1

### Training results



### Framework versions

- Transformers 4.38.2
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.15.2