File size: 2,258 Bytes
78fb18a 06da107 78fb18a d050a43 78fb18a 06da107 d050a43 a815a00 78fb18a d050a43 78fb18a a815a00 78fb18a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
---
library_name: transformers
license: apache-2.0
base_model: bert-base-cased
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: twitter_trainer
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# twitter_trainer
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7924
- Accuracy: 86.8509
- P: 102.7555
- R: 100.3442
- F1: 101.5355
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 7
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | P | R | F1 |
|:-------------:|:------:|:----:|:---------------:|:--------:|:--------:|:--------:|:--------:|
| 3.6245 | 1.0 | 597 | 0.4451 | 84.1709 | 99.8149 | 103.1569 | 101.4584 |
| 1.8323 | 2.0 | 1194 | 0.3794 | 86.0972 | 102.3665 | 100.0625 | 101.2014 |
| 1.233 | 3.0 | 1791 | 0.3715 | 87.5209 | 100.9234 | 102.3408 | 101.6272 |
| 0.9132 | 4.0 | 2388 | 0.5171 | 87.1022 | 102.4483 | 100.4991 | 101.4643 |
| 0.6928 | 5.0 | 2985 | 0.6683 | 86.9347 | 102.6526 | 100.5006 | 101.5652 |
| 0.4037 | 6.0 | 3582 | 0.7477 | 87.3534 | 101.8838 | 101.3746 | 101.6286 |
| 0.3334 | 6.9891 | 4172 | 0.7924 | 86.8509 | 102.7555 | 100.3442 | 101.5355 |
### Framework versions
- Transformers 4.47.1
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
|