File size: 2,258 Bytes
78fb18a
 
06da107
 
78fb18a
 
d050a43
 
 
78fb18a
 
 
 
 
 
 
 
 
 
06da107
d050a43
a815a00
 
 
 
 
78fb18a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d050a43
78fb18a
 
 
a815a00
 
 
 
 
 
 
 
 
78fb18a
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
---
library_name: transformers
license: apache-2.0
base_model: bert-base-cased
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: twitter_trainer
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# twitter_trainer

This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7924
- Accuracy: 86.8509
- P: 102.7555
- R: 100.3442
- F1: 101.5355

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 7

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Accuracy | P        | R        | F1       |
|:-------------:|:------:|:----:|:---------------:|:--------:|:--------:|:--------:|:--------:|
| 3.6245        | 1.0    | 597  | 0.4451          | 84.1709  | 99.8149  | 103.1569 | 101.4584 |
| 1.8323        | 2.0    | 1194 | 0.3794          | 86.0972  | 102.3665 | 100.0625 | 101.2014 |
| 1.233         | 3.0    | 1791 | 0.3715          | 87.5209  | 100.9234 | 102.3408 | 101.6272 |
| 0.9132        | 4.0    | 2388 | 0.5171          | 87.1022  | 102.4483 | 100.4991 | 101.4643 |
| 0.6928        | 5.0    | 2985 | 0.6683          | 86.9347  | 102.6526 | 100.5006 | 101.5652 |
| 0.4037        | 6.0    | 3582 | 0.7477          | 87.3534  | 101.8838 | 101.3746 | 101.6286 |
| 0.3334        | 6.9891 | 4172 | 0.7924          | 86.8509  | 102.7555 | 100.3442 | 101.5355 |


### Framework versions

- Transformers 4.47.1
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0