a2c-AntBulletEnv-v0 / config.json
Mikepool117's picture
Initial commit
952d952
raw
history blame
14.3 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fdba5e381f0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fdba5e38280>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fdba5e38310>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fdba5e383a0>", "_build": "<function ActorCriticPolicy._build at 0x7fdba5e38430>", "forward": "<function ActorCriticPolicy.forward at 0x7fdba5e384c0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fdba5e38550>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fdba5e385e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fdba5e38670>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fdba5e38700>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fdba5e38790>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fdba5e38820>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fdba6026600>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1684383379657996455, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAHiaFD7/Yqs+mhohP+OwmT+Pvg6/N7wUP3xAs764LwS/8KjLvwmi/724qE8/iH8APwgWnz4+w8e/djIrP+kPGD9ps8c+NyrAv2tyab7qOIA93CAwPwMvsr/a6JI/dyGRPgfKuL8hWpo+32ElPydhbr9o2C2/JTUvvnMqxz6E6jU+rYWuvl6TRj/+txo8Y0J5vnJGTr5vhKs+AHRWvd5QVj19CdU8tB34vgLdJz/Ypso8F+1oP6p59r7Y41Q+3wCDviTU+r42FwM/pvoPv9/1ZT6PUzE/IVqaPt9hJT8nYW6/HmQkP+zxRUCfLXm/AFLNP4S/tr90HtS/WRiLPzMZKr8GH4g/cqdvPxa59D8ScSU/BirRvsMCA8CTvcO9RCJ1wPEj6b/OoWK6F7Q+P3gOjjxAprO+mvV1wFEUCr7MA4fAj1MxPzpLVMDfYSU/J2FuvzbbWr12T3o/0FI4P8kZgD+N68W/kwwNwNHnYD+/35C+QWmNvXcmlb8ubE4/AMaXvwk1v7/h3nA/bwxCv7xfij44vMe/IpLnPrzaPj/BD6c8lShov1lcjL9zq8y+vTrtP49TMT8hWpo+32ElPydhbr+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAC5I3U1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAk5aQvAAAAAAL7uy/AAAAABXBlrwAAAAARQXcPwAAAAAziKi7AAAAAGRF2j8AAAAAKBBBvQAAAAC0Nv2/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAviODNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgKrU2L0AAAAAzEbrvwAAAABY/fW8AAAAAH9x6j8AAAAAY0/LvAAAAADkJOQ/AAAAACBe870AAAAA0e32vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEmd7YAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICz1Mk9AAAAAHvw/r8AAAAA02MrPQAAAADIavM/AAAAAIH6qL0AAAAASbP7PwAAAABJjKg8AAAAANkd+78AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD8koU1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAsGmrvQAAAAAiiuW/AAAAALxoDT4AAAAAzjgAQAAAAABmwwm+AAAAAICG5z8AAAAAxHtEPQAAAADR/PC/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJj7oEU0vXeMAWyUTegDjAF0lEdAqlBtM23rlnV9lChoBkdAlwNHw9aEBmgHTegDaAhHQKpRzSsKb8Z1fZQoaAZHQJlT6YNRWLhoB03oA2gIR0CqWS4rJ8v3dX2UKGgGR0CalC0aqCHzaAdN6ANoCEdAqlmb2Dg62nV9lChoBkdAlYBa6z3RHGgHTegDaAhHQKpc4XSBshx1fZQoaAZHQJWwNCkXUH9oB03oA2gIR0CqXkHctXgcdX2UKGgGR0CTP9V6eGwiaAdN6ANoCEdAqmbwybhFVnV9lChoBkdAixhX6yjYZmgHTegDaAhHQKpntpxm03R1fZQoaAZHQJCMRimVJMBoB03oA2gIR0CqbOSV4X41dX2UKGgGR0CT8sydWhh6aAdN6ANoCEdAqm6P2Cdz4nV9lChoBkdAlnDEkKNQ02gHTegDaAhHQKp15paiblR1fZQoaAZHQJbPJaC+UQloB03oA2gIR0CqdlojGDL9dX2UKGgGR0CXvs8FY+0PaAdN6ANoCEdAqnmRqh11XHV9lChoBkdAln9mAskIHGgHTegDaAhHQKp68uJ1q351fZQoaAZHQJiqvoxHoX9oB03oA2gIR0CqgmygwoLHdX2UKGgGR0CaV07pFCswaAdN6ANoCEdAqoMI95hScnV9lChoBkdAm/u0TL4etGgHTegDaAhHQKqH0yIHkcV1fZQoaAZHQJjC4mJFb3ZoB03oA2gIR0CqifJEQXhwdX2UKGgGR0CYiQYsNDtxaAdN6ANoCEdAqpItBlcyFnV9lChoBkdAmiQA0Kqn32gHTegDaAhHQKqSo46wMYx1fZQoaAZHQJWovEIgNgBoB03oA2gIR0CqlfM0pEx7dX2UKGgGR0CYX0qqfe1saAdN6ANoCEdAqpdczsQd0nV9lChoBkdAmHG9SVGCqmgHTegDaAhHQKqe2xmkFfR1fZQoaAZHQJoPSqFRHgBoB03oA2gIR0Cqn0xAjY7JdX2UKGgGR0CYQkxUNrj6aAdN6ANoCEdAqqOFuk1uSHV9lChoBkdAmj/RWkrPMWgHTegDaAhHQKqll3BYV7B1fZQoaAZHQJ0MX4/NZ/1oB03oA2gIR0CqruAOavzOdX2UKGgGR0CZ1kkS26TXaAdN6ANoCEdAqq9THp8neHV9lChoBkdAm1R/UF0PpmgHTegDaAhHQKqyvsSkCV91fZQoaAZHQJnhZB8hLXdoB03oA2gIR0CqtCaF/QSjdX2UKGgGR0CZQ845cTrWaAdN6ANoCEdAqrt5DJEH+3V9lChoBkdAmf2DFuNxVGgHTegDaAhHQKq75rP+n651fZQoaAZHQJgzSHxjJ+5oB03oA2gIR0CqvyUxmCiAdX2UKGgGR0CZsxCuU2UCaAdN6ANoCEdAqsELA1vVE3V9lChoBkdAmDa7n9vS+mgHTegDaAhHQKrLhdpItlJ1fZQoaAZHQJjrDXd0q6RoB03oA2gIR0Cqy/qP4mCzdX2UKGgGR0CW7B8IzFdcaAdN6ANoCEdAqs9H4qPOp3V9lChoBkdAlUYnGff4y2gHTegDaAhHQKrQsrKeTV51fZQoaAZHQJnlNf3N9phoB03oA2gIR0Cq1/0rTYukdX2UKGgGR0CaJo9zOopAaAdN6ANoCEdAqths4vN/v3V9lChoBkdAl7w8efZmI2gHTegDaAhHQKrbtpg1FYx1fZQoaAZHQJbCwsCkoF5oB03oA2gIR0Cq3SAH/tIDdX2UKGgGR0CYKyfjS5RTaAdN6ANoCEdAqugf6wdKd3V9lChoBkdAmGeETlDF62gHTegDaAhHQKro66MBIWh1fZQoaAZHQJaXPYpUgjhoB03oA2gIR0Cq7kFrVOKwdX2UKGgGR0CX1ww5/9YPaAdN6ANoCEdAqvCNytFKCnV9lChoBkdAlS3V1SwW32gHTegDaAhHQKr4+qzZ6D51fZQoaAZHQJVjWvECNjtoB03oA2gIR0Cq+WzEaVD8dX2UKGgGR0CXmCCYCyQgaAdN6ANoCEdAqvy4gPmPo3V9lChoBkdAliMQHZ9NOGgHTegDaAhHQKr+LkzXSSh1fZQoaAZHQJhpq3vx6OZoB03oA2gIR0CrBavfj0cwdX2UKGgGR0CXZEASWZ7YaAdN6ANoCEdAqwZZVCHARHV9lChoBkdAmvGlnh86WGgHTegDaAhHQKsLPronrpt1fZQoaAZHQJfJNvrGBFxoB03oA2gIR0CrDXxgqmTDdX2UKGgGR0CYjqEal1r7aAdN6ANoCEdAqxYKj+Jgs3V9lChoBkdAm6HdnkDIR2gHTegDaAhHQKsWfPVNHpd1fZQoaAZHQJa2BdzGPxRoB03oA2gIR0CrGecuBczJdX2UKGgGR0CVVwnfl6qsaAdN6ANoCEdAqxtar7waznV9lChoBkdAkR4ObVjI72gHTegDaAhHQKsizguyu6p1fZQoaAZHQHjlTCDVYp5oB03oA2gIR0CrI0FNlAeJdX2UKGgGR0CZuE7gKnejaAdN6ANoCEdAqydQJswcpHV9lChoBkdAlJE/SlWOqGgHTegDaAhHQKspUjZcs191fZQoaAZHQJnprgflp49oB03oA2gIR0CrMw34j8k2dX2UKGgGR0CSj5FKkEcLaAdN6ANoCEdAqzN+f29L6HV9lChoBkdAmbk8sg+yJWgHTegDaAhHQKs2u07bL2Z1fZQoaAZHQIBP36sQumJoB03oA2gIR0CrOCno5ggHdX2UKGgGR0CXpGcI7eVLaAdN6ANoCEdAqz+La4+bE3V9lChoBkdAl8GuWOZLI2gHTegDaAhHQKs/9xVhkRV1fZQoaAZHQJWIS02LpA5oB03oA2gIR0CrQ0ACGN70dX2UKGgGR0CV2WOz6ab4aAdN6ANoCEdAq0U4VwgkknV9lChoBkdAl3WR82JizGgHTegDaAhHQKtP0K1og3d1fZQoaAZHQJOO4CxNZeRoB03oA2gIR0CrUEC3gDRudX2UKGgGR0CXLxOdoWYXaAdN6ANoCEdAq1Oc0P6KtXV9lChoBkdAmBdSgXdj5WgHTegDaAhHQKtU/Jtix3V1fZQoaAZHQJae70Bfa6BoB03oA2gIR0CrXEzRYzSDdX2UKGgGR0CZNbDBuXNUaAdN6ANoCEdAq1y/P3SKFnV9lChoBkdAlgzFwT/Q0GgHTegDaAhHQKtf+NRWLgp1fZQoaAZHQJV28OH31z1oB03oA2gIR0CrYV+F+NLldX2UKGgGR0CHospMHryEaAdNiQJoCEdAq2XXWrfce3V9lChoBkdAlY7US/TLGWgHTegDaAhHQKtryHs1KoR1fZQoaAZHQJfg8dFOO81oB03oA2gIR0CrcCEJKJ2udX2UKGgGR0CWF107r9l3aAdN6ANoCEdAq3GRqh11XHV9lChoBkdAmY47xusLfGgHTegDaAhHQKt1C0bcXWR1fZQoaAZHQJXCLbfxc3VoB03oA2gIR0CrePlpPAO8dX2UKGgGR8BABG8M/hVEaAdLZ2gIR0CrekcafjCIdX2UKGgGR0CUsR9H+ZPVaAdN6ANoCEdAq3y2n/DLsHV9lChoBkdAmbkwQ176YWgHTegDaAhHQKt+HFuvUz91fZQoaAZHQJdGNQvYe1doB03oA2gIR0CrgXqeK8+SdX2UKGgGR0CWDOX7Lt/naAdN6ANoCEdAq4ky39aUzXV9lChoBkdAmjQDsyBTXWgHTegDaAhHQKuMwWAwwkB1fZQoaAZHQJMd3iLl3hZoB03oA2gIR0CrjiHP/rB1dX2UKGgGR0CW64ItUXHjaAdN6ANoCEdAq5GQZqEeyXV9lChoBkdAl/myZWq95GgHTegDaAhHQKuWykgwGnp1fZQoaAZHQJk+LuhK15VoB03oA2gIR0CrmUW4mTkidX2UKGgGR0CXpbFKTSssaAdN6ANoCEdAq5qnj6vaDnV9lChoBkdAlzTSmhufmWgHTegDaAhHQKueA6pYLb51fZQoaAZHQJmjXlDF6zFoB03oA2gIR0CrpFn1vl2edX2UKGgGR0CaINEJ0GNaaAdN6ANoCEdAq6gVLUTcqXV9lChoBkdAnKGqlchTwWgHTegDaAhHQKuqNU3GXHB1fZQoaAZHQJc/CTq0MPVoB03oA2gIR0Crres85jpcdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}