w2v2-base-pretrained_lr5e-5_at1_da1-p4

This model is a fine-tuned version of facebook/wav2vec2-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6341
  • Wer: 0.1039

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
18.6256 5.21 250 4.2622 1.0
3.3901 10.42 500 3.2209 1.0
3.0963 15.62 750 3.1175 1.0
2.0992 20.83 1000 0.5962 0.4402
0.2069 26.04 1250 0.4456 0.1310
0.0849 31.25 1500 0.4902 0.1200
0.0596 36.46 1750 0.5079 0.1176
0.0437 41.67 2000 0.5362 0.1136
0.0355 46.88 2250 0.5433 0.1156
0.0281 52.08 2500 0.5994 0.1136
0.0238 57.29 2750 0.6018 0.1112
0.02 62.5 3000 0.5970 0.1120
0.0181 67.71 3250 0.6282 0.1083
0.0167 72.92 3500 0.6120 0.1075
0.0145 78.12 3750 0.6404 0.1047
0.014 83.33 4000 0.6341 0.1039

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.0.0
  • Datasets 2.14.6
  • Tokenizers 0.14.1
Downloads last month
13
Safetensors
Model size
94.4M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for MelanieKoe/w2v2-base-pretrained_lr5e-5_at1_da1-p4

Finetuned
(693)
this model