File size: 3,307 Bytes
6e81f79
 
45373f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e81f79
 
45373f9
 
 
 
0e7b5e4
45373f9
 
 
 
 
 
 
 
 
 
 
 
 
 
1dfd5b9
 
 
 
 
 
 
 
 
 
 
 
 
 
45373f9
1dfd5b9
 
 
 
 
45373f9
 
 
 
 
1dfd5b9
 
 
45373f9
1dfd5b9
 
45373f9
 
 
 
 
 
1dfd5b9
45373f9
 
 
 
 
 
 
 
 
 
1dfd5b9
 
45373f9
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
---
library_name: transformers
license: mit
language:
- en
pipeline_tag: sentence-similarity
tags:
- text-embedding
- embeddings
- information-retrieval
- beir
- text-classification
- language-model
- text-clustering
- text-semantic-similarity
- text-evaluation
- text-reranking
- feature-extraction
- sentence-similarity
- Sentence Similarity
- natural_questions
- ms_marco
- fever
- hotpot_qa
- mteb
---

# LLM2Vec: Large Language Models Are Secretly Powerful Text Encoders

> LLM2Vec is a simple recipe to convert decoder-only LLMs into text encoders. It consists of 3 simple steps: 1) enabling bidirectional attention, 2) masked next token prediction, and 3) unsupervised contrastive learning. The model can be further fine-tuned to achieve state-of-the-art performance.
- **Repository:** https://github.com/McGill-NLP/llm2vec
- **Paper:** https://arxiv.org/abs/2404.05961

## Installation
```bash
pip install llm2vec
```

## Usage
```python
from llm2vec import LLM2Vec

import torch
from transformers import AutoTokenizer, AutoModel, AutoConfig
from peft import PeftModel

# Loading base Mistral model, along with custom code that enables bidirectional connections in decoder-only LLMs.
tokenizer = AutoTokenizer.from_pretrained(
    "McGill-NLP/LLM2Vec-Mistral-7B-Instruct-v2-mntp"
)
config = AutoConfig.from_pretrained(
    "McGill-NLP/LLM2Vec-Mistral-7B-Instruct-v2-mntp", trust_remote_code=True
)
model = AutoModel.from_pretrained(
    "McGill-NLP/LLM2Vec-Mistral-7B-Instruct-v2-mntp",
    trust_remote_code=True,
    config=config,
    torch_dtype=torch.bfloat16,
    device_map="cuda" if torch.cuda.is_available() else "cpu",
)

# Loading MNTP (Masked Next Token Prediction) model.
model = PeftModel.from_pretrained(
    model,
    "McGill-NLP/LLM2Vec-Mistral-7B-Instruct-v2-mntp",
)

# Wrapper for encoding and pooling operations
l2v = LLM2Vec(model, tokenizer, pooling_mode="mean", max_length=512)

# Encoding queries using instructions
instruction = (
    "Given a web search query, retrieve relevant passages that answer the query:"
)
queries = [
    [instruction, "how much protein should a female eat"],
    [instruction, "summit define"],
]
q_reps = l2v.encode(queries)

# Encoding documents. Instruction are not required for documents
documents = [
    "As a general guideline, the CDC's average requirement of protein for women ages 19 to 70 is 46 grams per day. But, as you can see from this chart, you'll need to increase that if you're expecting or training for a marathon. Check out the chart below to see how much protein you should be eating each day.",
    "Definition of summit for English Language Learners. : 1  the highest point of a mountain : the top of a mountain. : 2  the highest level. : 3  a meeting or series of meetings between the leaders of two or more governments.",
]
d_reps = l2v.encode(documents)

# Compute cosine similarity
q_reps_norm = torch.nn.functional.normalize(q_reps, p=2, dim=1)
d_reps_norm = torch.nn.functional.normalize(d_reps, p=2, dim=1)
cos_sim = torch.mm(q_reps_norm, d_reps_norm.transpose(0, 1))

print(cos_sim)
"""
tensor([[0.6266, 0.4199],
        [0.3429, 0.5240]])
"""
```

## Questions
If you have any question about the code, feel free to email Parishad (`[email protected]`) and Vaibhav (`[email protected]`).