Upload 10 files
Browse files- 1_Pooling/config.json +2 -2
- README.md +49 -8
- config.json +1 -1
- pytorch_model.bin +1 -1
- tokenizer_config.json +1 -1
1_Pooling/config.json
CHANGED
@@ -1,9 +1,9 @@
|
|
1 |
{
|
2 |
"word_embedding_dimension": 1024,
|
3 |
"pooling_mode_cls_token": false,
|
4 |
-
"pooling_mode_mean_tokens":
|
5 |
"pooling_mode_max_tokens": false,
|
6 |
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
-
"pooling_mode_weightedmean_tokens":
|
8 |
"pooling_mode_lasttoken": false
|
9 |
}
|
|
|
1 |
{
|
2 |
"word_embedding_dimension": 1024,
|
3 |
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
"pooling_mode_max_tokens": false,
|
6 |
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
"pooling_mode_lasttoken": false
|
9 |
}
|
README.md
CHANGED
@@ -4,6 +4,7 @@ tags:
|
|
4 |
- sentence-transformers
|
5 |
- feature-extraction
|
6 |
- sentence-similarity
|
|
|
7 |
---
|
8 |
|
9 |
# {MODEL_NAME}
|
@@ -33,6 +34,44 @@ print(embeddings)
|
|
33 |
|
34 |
|
35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
## Evaluation Results
|
37 |
|
38 |
<!--- Describe how your model was evaluated -->
|
@@ -45,29 +84,31 @@ The model was trained with the parameters:
|
|
45 |
|
46 |
**DataLoader**:
|
47 |
|
48 |
-
`
|
49 |
```
|
50 |
-
{'batch_size':
|
51 |
```
|
52 |
|
53 |
**Loss**:
|
54 |
|
55 |
-
`sentence_transformers.losses.
|
56 |
|
57 |
Parameters of the fit()-Method:
|
58 |
```
|
59 |
{
|
60 |
"epochs": 1,
|
61 |
-
"evaluation_steps":
|
62 |
-
"evaluator": "sentence_transformers.evaluation.
|
63 |
"max_grad_norm": 1,
|
64 |
"optimizer_class": "<class 'transformers.optimization.AdamW'>",
|
65 |
"optimizer_params": {
|
66 |
-
"
|
|
|
|
|
67 |
},
|
68 |
"scheduler": "WarmupLinear",
|
69 |
"steps_per_epoch": null,
|
70 |
-
"warmup_steps":
|
71 |
"weight_decay": 0.01
|
72 |
}
|
73 |
```
|
@@ -77,7 +118,7 @@ Parameters of the fit()-Method:
|
|
77 |
```
|
78 |
SentenceTransformer(
|
79 |
(0): Transformer({'max_seq_length': 150, 'do_lower_case': False}) with Transformer model: BloomModel
|
80 |
-
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens':
|
81 |
)
|
82 |
```
|
83 |
|
|
|
4 |
- sentence-transformers
|
5 |
- feature-extraction
|
6 |
- sentence-similarity
|
7 |
+
- transformers
|
8 |
---
|
9 |
|
10 |
# {MODEL_NAME}
|
|
|
34 |
|
35 |
|
36 |
|
37 |
+
## Usage (HuggingFace Transformers)
|
38 |
+
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
|
39 |
+
|
40 |
+
```python
|
41 |
+
from transformers import AutoTokenizer, AutoModel
|
42 |
+
import torch
|
43 |
+
|
44 |
+
|
45 |
+
#Mean Pooling - Take attention mask into account for correct averaging
|
46 |
+
def mean_pooling(model_output, attention_mask):
|
47 |
+
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
|
48 |
+
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
49 |
+
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
50 |
+
|
51 |
+
|
52 |
+
# Sentences we want sentence embeddings for
|
53 |
+
sentences = ['This is an example sentence', 'Each sentence is converted']
|
54 |
+
|
55 |
+
# Load model from HuggingFace Hub
|
56 |
+
tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
|
57 |
+
model = AutoModel.from_pretrained('{MODEL_NAME}')
|
58 |
+
|
59 |
+
# Tokenize sentences
|
60 |
+
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
61 |
+
|
62 |
+
# Compute token embeddings
|
63 |
+
with torch.no_grad():
|
64 |
+
model_output = model(**encoded_input)
|
65 |
+
|
66 |
+
# Perform pooling. In this case, mean pooling.
|
67 |
+
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
|
68 |
+
|
69 |
+
print("Sentence embeddings:")
|
70 |
+
print(sentence_embeddings)
|
71 |
+
```
|
72 |
+
|
73 |
+
|
74 |
+
|
75 |
## Evaluation Results
|
76 |
|
77 |
<!--- Describe how your model was evaluated -->
|
|
|
84 |
|
85 |
**DataLoader**:
|
86 |
|
87 |
+
`torch.utils.data.dataloader.DataLoader` of length 3076 with parameters:
|
88 |
```
|
89 |
+
{'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
|
90 |
```
|
91 |
|
92 |
**Loss**:
|
93 |
|
94 |
+
`sentence_transformers.losses.MSELoss.MSELoss`
|
95 |
|
96 |
Parameters of the fit()-Method:
|
97 |
```
|
98 |
{
|
99 |
"epochs": 1,
|
100 |
+
"evaluation_steps": 500,
|
101 |
+
"evaluator": "sentence_transformers.evaluation.SequentialEvaluator.SequentialEvaluator",
|
102 |
"max_grad_norm": 1,
|
103 |
"optimizer_class": "<class 'transformers.optimization.AdamW'>",
|
104 |
"optimizer_params": {
|
105 |
+
"correct_bias": false,
|
106 |
+
"eps": 1e-06,
|
107 |
+
"lr": 2e-05
|
108 |
},
|
109 |
"scheduler": "WarmupLinear",
|
110 |
"steps_per_epoch": null,
|
111 |
+
"warmup_steps": 1000,
|
112 |
"weight_decay": 0.01
|
113 |
}
|
114 |
```
|
|
|
118 |
```
|
119 |
SentenceTransformer(
|
120 |
(0): Transformer({'max_seq_length': 150, 'do_lower_case': False}) with Transformer model: BloomModel
|
121 |
+
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False})
|
122 |
)
|
123 |
```
|
124 |
|
config.json
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
{
|
2 |
-
"_name_or_path": "
|
3 |
"apply_residual_connection_post_layernorm": false,
|
4 |
"architectures": [
|
5 |
"BloomModel"
|
|
|
1 |
{
|
2 |
+
"_name_or_path": "Mayhem50/sgpt-bloom-560M-nli-v3",
|
3 |
"apply_residual_connection_post_layernorm": false,
|
4 |
"architectures": [
|
5 |
"BloomModel"
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 2236953889
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7ed607694a81d990d4e8e5a98818a12945cfc1c8d5b60e9b3656c372a0c18b6d
|
3 |
size 2236953889
|
tokenizer_config.json
CHANGED
@@ -3,7 +3,7 @@
|
|
3 |
"bos_token": "<s>",
|
4 |
"eos_token": "</s>",
|
5 |
"model_max_length": 1000000000000000019884624838656,
|
6 |
-
"name_or_path": "
|
7 |
"pad_token": "<pad>",
|
8 |
"padding_side": "left",
|
9 |
"special_tokens_map_file": null,
|
|
|
3 |
"bos_token": "<s>",
|
4 |
"eos_token": "</s>",
|
5 |
"model_max_length": 1000000000000000019884624838656,
|
6 |
+
"name_or_path": "Mayhem50/sgpt-bloom-560M-nli-v3",
|
7 |
"pad_token": "<pad>",
|
8 |
"padding_side": "left",
|
9 |
"special_tokens_map_file": null,
|