File size: 2,453 Bytes
8e6b0fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
---

license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: VIT-ASVspoof5-Mel_Spectrogram-Synthetic-Voice-Detection
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: imagefolder
      type: imagefolder
      config: default
      split: validation
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.7633416105001773
    - name: F1
      type: f1
      value: 0.8263822744093812
    - name: Precision
      type: precision
      value: 0.9621029413546957
    - name: Recall
      type: recall
      value: 0.7242190921033426
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# VIT-ASVspoof5-Mel_Spectrogram-Synthetic-Voice-Detection



This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.

It achieves the following results on the evaluation set:

- Loss: 2.0728

- Accuracy: 0.7633

- F1: 0.8264

- Precision: 0.9621

- Recall: 0.7242



## Model description



More information needed



## Intended uses & limitations



More information needed



## Training and evaluation data



More information needed



## Training procedure



### Training hyperparameters



The following hyperparameters were used during training:

- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0



### Training results



| Training Loss | Epoch | Step  | Validation Loss | Accuracy | F1     | Precision | Recall |

|:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:|

| 0.0047        | 1.0   | 22795 | 0.9664          | 0.8373   | 0.8919 | 0.9221    | 0.8637 |

| 0.0064        | 2.0   | 45590 | 1.6013          | 0.7830   | 0.8421 | 0.9701    | 0.7439 |

| 0.0           | 3.0   | 68385 | 2.0728          | 0.7633   | 0.8264 | 0.9621    | 0.7242 |





### Framework versions



- Transformers 4.44.0

- Pytorch 2.4.0+cu124

- Datasets 2.21.0

- Tokenizers 0.19.1