File size: 1,774 Bytes
300d601
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
---
license: apache-2.0
base_model: t5-large
tags:
- generated_from_trainer
model-index:
- name: rat-t5-large-qdmr-grounded-with-db-v2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# rat-t5-large-qdmr-grounded-with-db-v2

This model is a fine-tuned version of [t5-large](https://huggingface.co/t5-large) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0994

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 1
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 2
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 20000

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.5239        | 0.23  | 500  | 0.2421          |
| 0.2233        | 0.46  | 1000 | 0.1800          |
| 0.1734        | 0.69  | 1500 | 0.1397          |
| 0.1466        | 0.92  | 2000 | 0.1268          |
| 0.1092        | 1.16  | 2500 | 0.1153          |
| 0.094         | 1.39  | 3000 | 0.1078          |
| 0.0933        | 1.62  | 3500 | 0.1035          |
| 0.0947        | 1.85  | 4000 | 0.0924          |
| 0.0799        | 2.08  | 4500 | 0.0994          |


### Framework versions

- Transformers 4.33.1
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.13.3