Marxav commited on
Commit
c03697f
·
1 Parent(s): 4b10b36

Update README.md

Browse files

Add an example of prediction.

Files changed (1) hide show
  1. README.md +33 -2
README.md CHANGED
@@ -26,8 +26,39 @@ model-index:
26
  # Wav2Vec2-Large-XLSR-53-Breton
27
  The model can be used directly (without a language model) as follows:
28
  ```python
29
- TODO
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30
  ```
 
 
 
31
 
32
  The model can be evaluated as follows on the {language} test data of Common Voice.
33
  ```python
@@ -45,7 +76,7 @@ model = Wav2Vec2ForCTC.from_pretrained('Marxav/wav2vec2-large-xlsr-53-breton')
45
  model.to("cuda")
46
 
47
 
48
- chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�\'\(\)\/\«\»\½\…]'
49
 
50
  def remove_special_characters(batch):
51
  sentence = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() + " "
 
26
  # Wav2Vec2-Large-XLSR-53-Breton
27
  The model can be used directly (without a language model) as follows:
28
  ```python
29
+ import torch
30
+ import torchaudio
31
+ from datasets import load_dataset
32
+ from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
33
+ lang = "br"
34
+ test_dataset = load_dataset("common_voice", lang, split="test[:2%]")
35
+
36
+ processor = Wav2Vec2Processor.from_pretrained("Marxav/wav2vec2-large-xlsr-53-breton")
37
+ model = Wav2Vec2ForCTC.from_pretrained("Marxav/wav2vec2-large-xlsr-53-breton")
38
+
39
+ resampler = torchaudio.transforms.Resample(48_000, 16_000)
40
+
41
+ # Preprocessing the datasets.
42
+ # We need to read the aduio files as arrays
43
+ def speech_file_to_array_fn(batch):
44
+ speech_array, sampling_rate = torchaudio.load(batch["path"])
45
+ batch["speech"] = resampler(speech_array).squeeze().numpy()
46
+ return batch
47
+
48
+ test_dataset = test_dataset.map(speech_file_to_array_fn)
49
+ inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
50
+
51
+ with torch.no_grad():
52
+ logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
53
+
54
+ predicted_ids = torch.argmax(logits, dim=-1)
55
+
56
+ print("Prediction:", processor.batch_decode(predicted_ids))
57
+ print("Reference:", test_dataset["sentence"][:2])
58
  ```
59
+ The above code leads to the following prediction for the first two samples:
60
+ * Prediction: ["nel ler ket dont abenn eus netra la vez ser mirc'hid evel sij", 'an eil hag egile']
61
+ * Reference: ['"N\'haller ket dont a-benn eus netra pa vezer nec\'het evel-se."', 'An eil hag egile.']
62
 
63
  The model can be evaluated as follows on the {language} test data of Common Voice.
64
  ```python
 
76
  model.to("cuda")
77
 
78
 
79
+ chars_to_ignore_regex = '[\\,\\?\\.\\!\\-\\;\\:\\"\\“\\%\\‘\\”\\�\\'\\(\\)\\/\\«\\»\\½\\…]'
80
 
81
  def remove_special_characters(batch):
82
  sentence = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() + " "