MartialTerran
commited on
Create Pytorch_Sine-x_Function_NN-model.py
Browse filesBased on translation from https://github.com/Azacus1/Modelling-for-sin-wave-function/tree/main
https://github.com/Azacus1/Modelling-for-sin-wave-function/blob/main/Model.py
Pytorch_Sine-x_Function_NN-model.py
ADDED
@@ -0,0 +1,191 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Model to generate Sine(x) values.
|
2 |
+
# To do: add self.dropout = nn.Dropout(0.1) # Dropout layer
|
3 |
+
#Created on Thu Oct 28 12:18:37 2021
|
4 |
+
# @author: aman (translated to pytorch by Gemini)
|
5 |
+
|
6 |
+
|
7 |
+
import torch
|
8 |
+
import torch.nn as nn
|
9 |
+
import torch.optim as optim
|
10 |
+
import numpy as np
|
11 |
+
import pandas as pd
|
12 |
+
import matplotlib.pyplot as plt
|
13 |
+
import math
|
14 |
+
|
15 |
+
# Set seed for experiment reproducibility
|
16 |
+
seed = 1
|
17 |
+
np.random.seed(seed)
|
18 |
+
torch.manual_seed(seed)
|
19 |
+
|
20 |
+
# Number of sample datapoints
|
21 |
+
SAMPLES = 400
|
22 |
+
# Generate a uniformly distributed set of random numbers in the range from
|
23 |
+
# 0 to 2π, which covers a complete sine wave oscillation
|
24 |
+
x_values = np.random.uniform(
|
25 |
+
low=0, high=2*math.pi, size=SAMPLES).astype(np.float32)
|
26 |
+
|
27 |
+
print(x_values)
|
28 |
+
# Shuffle the values to guarantee they're not in order
|
29 |
+
np.random.shuffle(x_values)
|
30 |
+
|
31 |
+
# Calculate the corresponding sine values
|
32 |
+
y_values = np.sin(x_values).astype(np.float32)
|
33 |
+
|
34 |
+
# Plot our data. The 'b.' argument tells the library to print blue dots.
|
35 |
+
plt.plot(x_values, y_values, 'b.')
|
36 |
+
plt.show()
|
37 |
+
|
38 |
+
# Add a small random number to each y value
|
39 |
+
y_values += 0.01 * np.random.randn(*y_values.shape)
|
40 |
+
|
41 |
+
# Plot our data
|
42 |
+
plt.plot(x_values, y_values, 'b.')
|
43 |
+
plt.show()
|
44 |
+
|
45 |
+
# We'll use 60% of our data for training and 20% for testing. The remaining 20%
|
46 |
+
# will be used for validation. Calculate the indices of each section.
|
47 |
+
TRAIN_SPLIT = int(0.6 * SAMPLES)
|
48 |
+
TEST_SPLIT = int(0.2 * SAMPLES + TRAIN_SPLIT)
|
49 |
+
|
50 |
+
# Use np.split to chop our data into three parts.
|
51 |
+
# The second argument to np.split is an array of indices where the data will be
|
52 |
+
# split. We provide two indices, so the data will be divided into three chunks.
|
53 |
+
x_train, x_test, x_validate = np.split(x_values, [TRAIN_SPLIT, TEST_SPLIT])
|
54 |
+
y_train, y_test, y_validate = np.split(y_values, [TRAIN_SPLIT, TEST_SPLIT])
|
55 |
+
|
56 |
+
# Double check that our splits add up correctly
|
57 |
+
assert (x_train.size + x_validate.size + x_test.size) == SAMPLES
|
58 |
+
|
59 |
+
# Plot the data in each partition in different colors:
|
60 |
+
plt.plot(x_train, y_train, 'b.', label="Train")
|
61 |
+
plt.plot(x_test, y_test, 'r.', label="Test")
|
62 |
+
plt.plot(x_validate, y_validate, 'y.', label="Validate")
|
63 |
+
plt.legend()
|
64 |
+
plt.show()
|
65 |
+
|
66 |
+
# Convert data to PyTorch tensors
|
67 |
+
x_train_tensor = torch.from_numpy(x_train).unsqueeze(1)
|
68 |
+
y_train_tensor = torch.from_numpy(y_train).unsqueeze(1)
|
69 |
+
x_test_tensor = torch.from_numpy(x_test).unsqueeze(1)
|
70 |
+
y_test_tensor = torch.from_numpy(y_test).unsqueeze(1)
|
71 |
+
x_validate_tensor = torch.from_numpy(x_validate).unsqueeze(1)
|
72 |
+
y_validate_tensor = torch.from_numpy(y_validate).unsqueeze(1)
|
73 |
+
|
74 |
+
# Define the PyTorch model
|
75 |
+
class SineModel(nn.Module):
|
76 |
+
def __init__(self):
|
77 |
+
super(SineModel, self).__init__()
|
78 |
+
self.fc1 = nn.Linear(1, 16)
|
79 |
+
self.fc2 = nn.Linear(16, 16)
|
80 |
+
self.fc3 = nn.Linear(16, 1)
|
81 |
+
self.relu = nn.ReLU()
|
82 |
+
|
83 |
+
def forward(self, x):
|
84 |
+
x = self.relu(self.fc1(x))
|
85 |
+
x = self.relu(self.fc2(x))
|
86 |
+
x = self.fc3(x)
|
87 |
+
return x
|
88 |
+
|
89 |
+
model = SineModel()
|
90 |
+
|
91 |
+
# Define optimizer and loss function
|
92 |
+
optimizer = optim.Adam(model.parameters(), lr=0.001) # lr = learning rate
|
93 |
+
loss_fn = nn.MSELoss()
|
94 |
+
|
95 |
+
# Train the model
|
96 |
+
epochs = 500
|
97 |
+
batch_size = 64
|
98 |
+
train_losses = []
|
99 |
+
val_losses = []
|
100 |
+
|
101 |
+
for epoch in range(1, epochs + 1):
|
102 |
+
# Training
|
103 |
+
model.train()
|
104 |
+
permutation = torch.randperm(x_train_tensor.size()[0])
|
105 |
+
|
106 |
+
epoch_train_loss = 0.0
|
107 |
+
for i in range(0, x_train_tensor.size()[0], batch_size):
|
108 |
+
indices = permutation[i:i+batch_size]
|
109 |
+
x_batch, y_batch = x_train_tensor[indices], y_train_tensor[indices]
|
110 |
+
|
111 |
+
optimizer.zero_grad()
|
112 |
+
y_pred = model(x_batch)
|
113 |
+
loss = loss_fn(y_pred, y_batch)
|
114 |
+
loss.backward()
|
115 |
+
optimizer.step()
|
116 |
+
|
117 |
+
epoch_train_loss += loss.item() * x_batch.size(0)
|
118 |
+
|
119 |
+
train_losses.append(epoch_train_loss/x_train_tensor.size(0))
|
120 |
+
|
121 |
+
# Validation
|
122 |
+
model.eval()
|
123 |
+
with torch.no_grad():
|
124 |
+
y_val_pred = model(x_validate_tensor)
|
125 |
+
val_loss = loss_fn(y_val_pred, y_validate_tensor).item()
|
126 |
+
val_losses.append(val_loss)
|
127 |
+
|
128 |
+
if epoch % 100 == 0:
|
129 |
+
print(f'Epoch {epoch}/{epochs}, Training Loss: {train_losses[-1]:.4f}, Validation Loss: {val_loss:.4f}')
|
130 |
+
|
131 |
+
# Draw a graph of the loss, which is the distance between
|
132 |
+
# the predicted and actual values during training and validation.
|
133 |
+
|
134 |
+
epochs_range = range(1, len(train_losses) + 1)
|
135 |
+
|
136 |
+
# Exclude the first few epochs so the graph is easier to read
|
137 |
+
SKIP = 0
|
138 |
+
|
139 |
+
plt.figure(figsize=(10, 4))
|
140 |
+
plt.subplot(1, 2, 1)
|
141 |
+
|
142 |
+
plt.plot(epochs_range[SKIP:], train_losses[SKIP:], 'g.', label='Training loss')
|
143 |
+
plt.plot(epochs_range[SKIP:], val_losses[SKIP:], 'b.', label='Validation loss')
|
144 |
+
plt.title('Training and validation loss')
|
145 |
+
plt.xlabel('Epochs')
|
146 |
+
plt.ylabel('Loss')
|
147 |
+
plt.legend()
|
148 |
+
|
149 |
+
plt.subplot(1, 2, 2)
|
150 |
+
|
151 |
+
# Draw a graph of mean absolute error, which is another way of
|
152 |
+
# measuring the amount of error in the prediction.
|
153 |
+
# We need to recalculate MAE because it was not stored during training
|
154 |
+
model.eval()
|
155 |
+
with torch.no_grad():
|
156 |
+
train_mae = torch.mean(torch.abs(model(x_train_tensor) - y_train_tensor)).item()
|
157 |
+
val_mae = torch.mean(torch.abs(model(x_validate_tensor) - y_validate_tensor)).item()
|
158 |
+
|
159 |
+
plt.plot([epochs_range[-1]], [train_mae], 'g.', label='Training MAE')
|
160 |
+
plt.plot([epochs_range[-1]], [val_mae], 'b.', label='Validation MAE')
|
161 |
+
plt.title('Training and validation mean absolute error')
|
162 |
+
plt.xlabel('Epochs (only final epoch shown for MAE)')
|
163 |
+
plt.ylabel('MAE')
|
164 |
+
plt.legend()
|
165 |
+
|
166 |
+
plt.tight_layout()
|
167 |
+
plt.show()
|
168 |
+
|
169 |
+
# Calculate and print the loss on our test dataset
|
170 |
+
model.eval()
|
171 |
+
with torch.no_grad():
|
172 |
+
y_test_pred_tensor = model(x_test_tensor)
|
173 |
+
test_loss = loss_fn(y_test_pred_tensor, y_test_tensor).item()
|
174 |
+
test_mae = torch.mean(torch.abs(y_test_pred_tensor - y_test_tensor)).item()
|
175 |
+
|
176 |
+
print(f'Test Loss: {test_loss:.4f}')
|
177 |
+
print(f'Test MAE: {test_mae:.4f}')
|
178 |
+
|
179 |
+
# Make predictions based on our test dataset
|
180 |
+
# y_test_pred has already been computed above when calculating test loss/MAE
|
181 |
+
|
182 |
+
# Graph the predictions against the actual values
|
183 |
+
plt.clf()
|
184 |
+
plt.title('Comparison of predictions and actual values')
|
185 |
+
plt.plot(x_test, y_test, 'b.', label='Actual values')
|
186 |
+
plt.plot(x_test, y_test_pred_tensor.detach().numpy(), 'r.', label='PyTorch predicted')
|
187 |
+
plt.legend()
|
188 |
+
plt.show()
|
189 |
+
|
190 |
+
# PyTorch does not have a direct equivalent to TensorFlow Lite built-in.
|
191 |
+
# For mobile/embedded
|