Upload README.md with huggingface_hub
Browse files
README.md
ADDED
@@ -0,0 +1,740 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
datasets:
|
3 |
+
- bigscience/xP3mt
|
4 |
+
- mc4
|
5 |
+
license: apache-2.0
|
6 |
+
language:
|
7 |
+
- af
|
8 |
+
- am
|
9 |
+
- ar
|
10 |
+
- az
|
11 |
+
- be
|
12 |
+
- bg
|
13 |
+
- bn
|
14 |
+
- ca
|
15 |
+
- ceb
|
16 |
+
- co
|
17 |
+
- cs
|
18 |
+
- cy
|
19 |
+
- da
|
20 |
+
- de
|
21 |
+
- el
|
22 |
+
- en
|
23 |
+
- eo
|
24 |
+
- es
|
25 |
+
- et
|
26 |
+
- eu
|
27 |
+
- fa
|
28 |
+
- fi
|
29 |
+
- fil
|
30 |
+
- fr
|
31 |
+
- fy
|
32 |
+
- ga
|
33 |
+
- gd
|
34 |
+
- gl
|
35 |
+
- gu
|
36 |
+
- ha
|
37 |
+
- haw
|
38 |
+
- hi
|
39 |
+
- hmn
|
40 |
+
- ht
|
41 |
+
- hu
|
42 |
+
- hy
|
43 |
+
- ig
|
44 |
+
- is
|
45 |
+
- it
|
46 |
+
- iw
|
47 |
+
- ja
|
48 |
+
- jv
|
49 |
+
- ka
|
50 |
+
- kk
|
51 |
+
- km
|
52 |
+
- kn
|
53 |
+
- ko
|
54 |
+
- ku
|
55 |
+
- ky
|
56 |
+
- la
|
57 |
+
- lb
|
58 |
+
- lo
|
59 |
+
- lt
|
60 |
+
- lv
|
61 |
+
- mg
|
62 |
+
- mi
|
63 |
+
- mk
|
64 |
+
- ml
|
65 |
+
- mn
|
66 |
+
- mr
|
67 |
+
- ms
|
68 |
+
- mt
|
69 |
+
- my
|
70 |
+
- ne
|
71 |
+
- nl
|
72 |
+
- 'no'
|
73 |
+
- ny
|
74 |
+
- pa
|
75 |
+
- pl
|
76 |
+
- ps
|
77 |
+
- pt
|
78 |
+
- ro
|
79 |
+
- ru
|
80 |
+
- sd
|
81 |
+
- si
|
82 |
+
- sk
|
83 |
+
- sl
|
84 |
+
- sm
|
85 |
+
- sn
|
86 |
+
- so
|
87 |
+
- sq
|
88 |
+
- sr
|
89 |
+
- st
|
90 |
+
- su
|
91 |
+
- sv
|
92 |
+
- sw
|
93 |
+
- ta
|
94 |
+
- te
|
95 |
+
- tg
|
96 |
+
- th
|
97 |
+
- tr
|
98 |
+
- uk
|
99 |
+
- und
|
100 |
+
- ur
|
101 |
+
- uz
|
102 |
+
- vi
|
103 |
+
- xh
|
104 |
+
- yi
|
105 |
+
- yo
|
106 |
+
- zh
|
107 |
+
- zu
|
108 |
+
tags:
|
109 |
+
- text2text-generation
|
110 |
+
- llama-cpp
|
111 |
+
- gguf-my-repo
|
112 |
+
widget:
|
113 |
+
- text: Life is beautiful! Translate to Mongolian.
|
114 |
+
example_title: mn-en translation
|
115 |
+
- text: Le mot japonais «憂鬱» veut dire quoi en Odia?
|
116 |
+
example_title: jp-or-fr translation
|
117 |
+
- text: Stell mir eine schwierige Quiz Frage bei der es um Astronomie geht. Bitte
|
118 |
+
stell die Frage auf Norwegisch.
|
119 |
+
example_title: de-nb quiz
|
120 |
+
- text: 一个传奇的开端,一个不灭的神话,这不仅仅是一部电影,而是作为一个走进新时代的标签,永远彪炳史册。Would you rate the previous
|
121 |
+
review as positive, neutral or negative?
|
122 |
+
example_title: zh-en sentiment
|
123 |
+
- text: 一个传奇的开端,一个不灭的神话,这不仅仅是一部电影,而是作为一个走进新时代的标签,永远彪炳史册。你认为这句话的立场是赞扬、中立还是批评?
|
124 |
+
example_title: zh-zh sentiment
|
125 |
+
- text: Suggest at least five related search terms to "Mạng neural nhân tạo".
|
126 |
+
example_title: vi-en query
|
127 |
+
- text: Proposez au moins cinq mots clés concernant «Réseau de neurones artificiels».
|
128 |
+
example_title: fr-fr query
|
129 |
+
- text: Explain in a sentence in Telugu what is backpropagation in neural networks.
|
130 |
+
example_title: te-en qa
|
131 |
+
- text: Why is the sky blue?
|
132 |
+
example_title: en-en qa
|
133 |
+
- text: 'Write a fairy tale about a troll saving a princess from a dangerous dragon.
|
134 |
+
The fairy tale is a masterpiece that has achieved praise worldwide and its moral
|
135 |
+
is "Heroes Come in All Shapes and Sizes". Story (in Spanish):'
|
136 |
+
example_title: es-en fable
|
137 |
+
- text: 'Write a fable about wood elves living in a forest that is suddenly invaded
|
138 |
+
by ogres. The fable is a masterpiece that has achieved praise worldwide and its
|
139 |
+
moral is "Violence is the last refuge of the incompetent". Fable (in Hindi):'
|
140 |
+
example_title: hi-en fable
|
141 |
+
pipeline_tag: text2text-generation
|
142 |
+
base_model: bigscience/mt0-xxl-mt
|
143 |
+
model-index:
|
144 |
+
- name: mt0-xxl-mt
|
145 |
+
results:
|
146 |
+
- task:
|
147 |
+
type: Coreference resolution
|
148 |
+
dataset:
|
149 |
+
name: Winogrande XL (xl)
|
150 |
+
type: winogrande
|
151 |
+
config: xl
|
152 |
+
split: validation
|
153 |
+
revision: a80f460359d1e9a67c006011c94de42a8759430c
|
154 |
+
metrics:
|
155 |
+
- type: Accuracy
|
156 |
+
value: 62.67
|
157 |
+
- task:
|
158 |
+
type: Coreference resolution
|
159 |
+
dataset:
|
160 |
+
name: XWinograd (en)
|
161 |
+
type: Muennighoff/xwinograd
|
162 |
+
config: en
|
163 |
+
split: test
|
164 |
+
revision: 9dd5ea5505fad86b7bedad667955577815300cee
|
165 |
+
metrics:
|
166 |
+
- type: Accuracy
|
167 |
+
value: 83.31
|
168 |
+
- task:
|
169 |
+
type: Coreference resolution
|
170 |
+
dataset:
|
171 |
+
name: XWinograd (fr)
|
172 |
+
type: Muennighoff/xwinograd
|
173 |
+
config: fr
|
174 |
+
split: test
|
175 |
+
revision: 9dd5ea5505fad86b7bedad667955577815300cee
|
176 |
+
metrics:
|
177 |
+
- type: Accuracy
|
178 |
+
value: 78.31
|
179 |
+
- task:
|
180 |
+
type: Coreference resolution
|
181 |
+
dataset:
|
182 |
+
name: XWinograd (jp)
|
183 |
+
type: Muennighoff/xwinograd
|
184 |
+
config: jp
|
185 |
+
split: test
|
186 |
+
revision: 9dd5ea5505fad86b7bedad667955577815300cee
|
187 |
+
metrics:
|
188 |
+
- type: Accuracy
|
189 |
+
value: 80.19
|
190 |
+
- task:
|
191 |
+
type: Coreference resolution
|
192 |
+
dataset:
|
193 |
+
name: XWinograd (pt)
|
194 |
+
type: Muennighoff/xwinograd
|
195 |
+
config: pt
|
196 |
+
split: test
|
197 |
+
revision: 9dd5ea5505fad86b7bedad667955577815300cee
|
198 |
+
metrics:
|
199 |
+
- type: Accuracy
|
200 |
+
value: 80.99
|
201 |
+
- task:
|
202 |
+
type: Coreference resolution
|
203 |
+
dataset:
|
204 |
+
name: XWinograd (ru)
|
205 |
+
type: Muennighoff/xwinograd
|
206 |
+
config: ru
|
207 |
+
split: test
|
208 |
+
revision: 9dd5ea5505fad86b7bedad667955577815300cee
|
209 |
+
metrics:
|
210 |
+
- type: Accuracy
|
211 |
+
value: 79.05
|
212 |
+
- task:
|
213 |
+
type: Coreference resolution
|
214 |
+
dataset:
|
215 |
+
name: XWinograd (zh)
|
216 |
+
type: Muennighoff/xwinograd
|
217 |
+
config: zh
|
218 |
+
split: test
|
219 |
+
revision: 9dd5ea5505fad86b7bedad667955577815300cee
|
220 |
+
metrics:
|
221 |
+
- type: Accuracy
|
222 |
+
value: 82.34
|
223 |
+
- task:
|
224 |
+
type: Natural language inference
|
225 |
+
dataset:
|
226 |
+
name: ANLI (r1)
|
227 |
+
type: anli
|
228 |
+
config: r1
|
229 |
+
split: validation
|
230 |
+
revision: 9dbd830a06fea8b1c49d6e5ef2004a08d9f45094
|
231 |
+
metrics:
|
232 |
+
- type: Accuracy
|
233 |
+
value: 49.5
|
234 |
+
- task:
|
235 |
+
type: Natural language inference
|
236 |
+
dataset:
|
237 |
+
name: ANLI (r2)
|
238 |
+
type: anli
|
239 |
+
config: r2
|
240 |
+
split: validation
|
241 |
+
revision: 9dbd830a06fea8b1c49d6e5ef2004a08d9f45094
|
242 |
+
metrics:
|
243 |
+
- type: Accuracy
|
244 |
+
value: 42
|
245 |
+
- task:
|
246 |
+
type: Natural language inference
|
247 |
+
dataset:
|
248 |
+
name: ANLI (r3)
|
249 |
+
type: anli
|
250 |
+
config: r3
|
251 |
+
split: validation
|
252 |
+
revision: 9dbd830a06fea8b1c49d6e5ef2004a08d9f45094
|
253 |
+
metrics:
|
254 |
+
- type: Accuracy
|
255 |
+
value: 48.17
|
256 |
+
- task:
|
257 |
+
type: Natural language inference
|
258 |
+
dataset:
|
259 |
+
name: SuperGLUE (cb)
|
260 |
+
type: super_glue
|
261 |
+
config: cb
|
262 |
+
split: validation
|
263 |
+
revision: 9e12063561e7e6c79099feb6d5a493142584e9e2
|
264 |
+
metrics:
|
265 |
+
- type: Accuracy
|
266 |
+
value: 87.5
|
267 |
+
- task:
|
268 |
+
type: Natural language inference
|
269 |
+
dataset:
|
270 |
+
name: SuperGLUE (rte)
|
271 |
+
type: super_glue
|
272 |
+
config: rte
|
273 |
+
split: validation
|
274 |
+
revision: 9e12063561e7e6c79099feb6d5a493142584e9e2
|
275 |
+
metrics:
|
276 |
+
- type: Accuracy
|
277 |
+
value: 84.84
|
278 |
+
- task:
|
279 |
+
type: Natural language inference
|
280 |
+
dataset:
|
281 |
+
name: XNLI (ar)
|
282 |
+
type: xnli
|
283 |
+
config: ar
|
284 |
+
split: validation
|
285 |
+
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
|
286 |
+
metrics:
|
287 |
+
- type: Accuracy
|
288 |
+
value: 58.03
|
289 |
+
- task:
|
290 |
+
type: Natural language inference
|
291 |
+
dataset:
|
292 |
+
name: XNLI (bg)
|
293 |
+
type: xnli
|
294 |
+
config: bg
|
295 |
+
split: validation
|
296 |
+
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
|
297 |
+
metrics:
|
298 |
+
- type: Accuracy
|
299 |
+
value: 59.92
|
300 |
+
- task:
|
301 |
+
type: Natural language inference
|
302 |
+
dataset:
|
303 |
+
name: XNLI (de)
|
304 |
+
type: xnli
|
305 |
+
config: de
|
306 |
+
split: validation
|
307 |
+
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
|
308 |
+
metrics:
|
309 |
+
- type: Accuracy
|
310 |
+
value: 60.16
|
311 |
+
- task:
|
312 |
+
type: Natural language inference
|
313 |
+
dataset:
|
314 |
+
name: XNLI (el)
|
315 |
+
type: xnli
|
316 |
+
config: el
|
317 |
+
split: validation
|
318 |
+
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
|
319 |
+
metrics:
|
320 |
+
- type: Accuracy
|
321 |
+
value: 59.2
|
322 |
+
- task:
|
323 |
+
type: Natural language inference
|
324 |
+
dataset:
|
325 |
+
name: XNLI (en)
|
326 |
+
type: xnli
|
327 |
+
config: en
|
328 |
+
split: validation
|
329 |
+
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
|
330 |
+
metrics:
|
331 |
+
- type: Accuracy
|
332 |
+
value: 62.25
|
333 |
+
- task:
|
334 |
+
type: Natural language inference
|
335 |
+
dataset:
|
336 |
+
name: XNLI (es)
|
337 |
+
type: xnli
|
338 |
+
config: es
|
339 |
+
split: validation
|
340 |
+
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
|
341 |
+
metrics:
|
342 |
+
- type: Accuracy
|
343 |
+
value: 60.92
|
344 |
+
- task:
|
345 |
+
type: Natural language inference
|
346 |
+
dataset:
|
347 |
+
name: XNLI (fr)
|
348 |
+
type: xnli
|
349 |
+
config: fr
|
350 |
+
split: validation
|
351 |
+
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
|
352 |
+
metrics:
|
353 |
+
- type: Accuracy
|
354 |
+
value: 59.88
|
355 |
+
- task:
|
356 |
+
type: Natural language inference
|
357 |
+
dataset:
|
358 |
+
name: XNLI (hi)
|
359 |
+
type: xnli
|
360 |
+
config: hi
|
361 |
+
split: validation
|
362 |
+
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
|
363 |
+
metrics:
|
364 |
+
- type: Accuracy
|
365 |
+
value: 57.47
|
366 |
+
- task:
|
367 |
+
type: Natural language inference
|
368 |
+
dataset:
|
369 |
+
name: XNLI (ru)
|
370 |
+
type: xnli
|
371 |
+
config: ru
|
372 |
+
split: validation
|
373 |
+
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
|
374 |
+
metrics:
|
375 |
+
- type: Accuracy
|
376 |
+
value: 58.67
|
377 |
+
- task:
|
378 |
+
type: Natural language inference
|
379 |
+
dataset:
|
380 |
+
name: XNLI (sw)
|
381 |
+
type: xnli
|
382 |
+
config: sw
|
383 |
+
split: validation
|
384 |
+
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
|
385 |
+
metrics:
|
386 |
+
- type: Accuracy
|
387 |
+
value: 56.79
|
388 |
+
- task:
|
389 |
+
type: Natural language inference
|
390 |
+
dataset:
|
391 |
+
name: XNLI (th)
|
392 |
+
type: xnli
|
393 |
+
config: th
|
394 |
+
split: validation
|
395 |
+
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
|
396 |
+
metrics:
|
397 |
+
- type: Accuracy
|
398 |
+
value: 58.03
|
399 |
+
- task:
|
400 |
+
type: Natural language inference
|
401 |
+
dataset:
|
402 |
+
name: XNLI (tr)
|
403 |
+
type: xnli
|
404 |
+
config: tr
|
405 |
+
split: validation
|
406 |
+
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
|
407 |
+
metrics:
|
408 |
+
- type: Accuracy
|
409 |
+
value: 57.67
|
410 |
+
- task:
|
411 |
+
type: Natural language inference
|
412 |
+
dataset:
|
413 |
+
name: XNLI (ur)
|
414 |
+
type: xnli
|
415 |
+
config: ur
|
416 |
+
split: validation
|
417 |
+
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
|
418 |
+
metrics:
|
419 |
+
- type: Accuracy
|
420 |
+
value: 55.98
|
421 |
+
- task:
|
422 |
+
type: Natural language inference
|
423 |
+
dataset:
|
424 |
+
name: XNLI (vi)
|
425 |
+
type: xnli
|
426 |
+
config: vi
|
427 |
+
split: validation
|
428 |
+
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
|
429 |
+
metrics:
|
430 |
+
- type: Accuracy
|
431 |
+
value: 58.92
|
432 |
+
- task:
|
433 |
+
type: Natural language inference
|
434 |
+
dataset:
|
435 |
+
name: XNLI (zh)
|
436 |
+
type: xnli
|
437 |
+
config: zh
|
438 |
+
split: validation
|
439 |
+
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
|
440 |
+
metrics:
|
441 |
+
- type: Accuracy
|
442 |
+
value: 58.71
|
443 |
+
- task:
|
444 |
+
type: Sentence completion
|
445 |
+
dataset:
|
446 |
+
name: StoryCloze (2016)
|
447 |
+
type: story_cloze
|
448 |
+
config: '2016'
|
449 |
+
split: validation
|
450 |
+
revision: e724c6f8cdf7c7a2fb229d862226e15b023ee4db
|
451 |
+
metrics:
|
452 |
+
- type: Accuracy
|
453 |
+
value: 94.66
|
454 |
+
- task:
|
455 |
+
type: Sentence completion
|
456 |
+
dataset:
|
457 |
+
name: SuperGLUE (copa)
|
458 |
+
type: super_glue
|
459 |
+
config: copa
|
460 |
+
split: validation
|
461 |
+
revision: 9e12063561e7e6c79099feb6d5a493142584e9e2
|
462 |
+
metrics:
|
463 |
+
- type: Accuracy
|
464 |
+
value: 88
|
465 |
+
- task:
|
466 |
+
type: Sentence completion
|
467 |
+
dataset:
|
468 |
+
name: XCOPA (et)
|
469 |
+
type: xcopa
|
470 |
+
config: et
|
471 |
+
split: validation
|
472 |
+
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
473 |
+
metrics:
|
474 |
+
- type: Accuracy
|
475 |
+
value: 81
|
476 |
+
- task:
|
477 |
+
type: Sentence completion
|
478 |
+
dataset:
|
479 |
+
name: XCOPA (ht)
|
480 |
+
type: xcopa
|
481 |
+
config: ht
|
482 |
+
split: validation
|
483 |
+
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
484 |
+
metrics:
|
485 |
+
- type: Accuracy
|
486 |
+
value: 79
|
487 |
+
- task:
|
488 |
+
type: Sentence completion
|
489 |
+
dataset:
|
490 |
+
name: XCOPA (id)
|
491 |
+
type: xcopa
|
492 |
+
config: id
|
493 |
+
split: validation
|
494 |
+
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
495 |
+
metrics:
|
496 |
+
- type: Accuracy
|
497 |
+
value: 90
|
498 |
+
- task:
|
499 |
+
type: Sentence completion
|
500 |
+
dataset:
|
501 |
+
name: XCOPA (it)
|
502 |
+
type: xcopa
|
503 |
+
config: it
|
504 |
+
split: validation
|
505 |
+
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
506 |
+
metrics:
|
507 |
+
- type: Accuracy
|
508 |
+
value: 88
|
509 |
+
- task:
|
510 |
+
type: Sentence completion
|
511 |
+
dataset:
|
512 |
+
name: XCOPA (qu)
|
513 |
+
type: xcopa
|
514 |
+
config: qu
|
515 |
+
split: validation
|
516 |
+
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
517 |
+
metrics:
|
518 |
+
- type: Accuracy
|
519 |
+
value: 56
|
520 |
+
- task:
|
521 |
+
type: Sentence completion
|
522 |
+
dataset:
|
523 |
+
name: XCOPA (sw)
|
524 |
+
type: xcopa
|
525 |
+
config: sw
|
526 |
+
split: validation
|
527 |
+
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
528 |
+
metrics:
|
529 |
+
- type: Accuracy
|
530 |
+
value: 81
|
531 |
+
- task:
|
532 |
+
type: Sentence completion
|
533 |
+
dataset:
|
534 |
+
name: XCOPA (ta)
|
535 |
+
type: xcopa
|
536 |
+
config: ta
|
537 |
+
split: validation
|
538 |
+
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
539 |
+
metrics:
|
540 |
+
- type: Accuracy
|
541 |
+
value: 81
|
542 |
+
- task:
|
543 |
+
type: Sentence completion
|
544 |
+
dataset:
|
545 |
+
name: XCOPA (th)
|
546 |
+
type: xcopa
|
547 |
+
config: th
|
548 |
+
split: validation
|
549 |
+
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
550 |
+
metrics:
|
551 |
+
- type: Accuracy
|
552 |
+
value: 76
|
553 |
+
- task:
|
554 |
+
type: Sentence completion
|
555 |
+
dataset:
|
556 |
+
name: XCOPA (tr)
|
557 |
+
type: xcopa
|
558 |
+
config: tr
|
559 |
+
split: validation
|
560 |
+
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
561 |
+
metrics:
|
562 |
+
- type: Accuracy
|
563 |
+
value: 76
|
564 |
+
- task:
|
565 |
+
type: Sentence completion
|
566 |
+
dataset:
|
567 |
+
name: XCOPA (vi)
|
568 |
+
type: xcopa
|
569 |
+
config: vi
|
570 |
+
split: validation
|
571 |
+
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
572 |
+
metrics:
|
573 |
+
- type: Accuracy
|
574 |
+
value: 85
|
575 |
+
- task:
|
576 |
+
type: Sentence completion
|
577 |
+
dataset:
|
578 |
+
name: XCOPA (zh)
|
579 |
+
type: xcopa
|
580 |
+
config: zh
|
581 |
+
split: validation
|
582 |
+
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
583 |
+
metrics:
|
584 |
+
- type: Accuracy
|
585 |
+
value: 87
|
586 |
+
- task:
|
587 |
+
type: Sentence completion
|
588 |
+
dataset:
|
589 |
+
name: XStoryCloze (ar)
|
590 |
+
type: Muennighoff/xstory_cloze
|
591 |
+
config: ar
|
592 |
+
split: validation
|
593 |
+
revision: 8bb76e594b68147f1a430e86829d07189622b90d
|
594 |
+
metrics:
|
595 |
+
- type: Accuracy
|
596 |
+
value: 91
|
597 |
+
- task:
|
598 |
+
type: Sentence completion
|
599 |
+
dataset:
|
600 |
+
name: XStoryCloze (es)
|
601 |
+
type: Muennighoff/xstory_cloze
|
602 |
+
config: es
|
603 |
+
split: validation
|
604 |
+
revision: 8bb76e594b68147f1a430e86829d07189622b90d
|
605 |
+
metrics:
|
606 |
+
- type: Accuracy
|
607 |
+
value: 93.38
|
608 |
+
- task:
|
609 |
+
type: Sentence completion
|
610 |
+
dataset:
|
611 |
+
name: XStoryCloze (eu)
|
612 |
+
type: Muennighoff/xstory_cloze
|
613 |
+
config: eu
|
614 |
+
split: validation
|
615 |
+
revision: 8bb76e594b68147f1a430e86829d07189622b90d
|
616 |
+
metrics:
|
617 |
+
- type: Accuracy
|
618 |
+
value: 91.13
|
619 |
+
- task:
|
620 |
+
type: Sentence completion
|
621 |
+
dataset:
|
622 |
+
name: XStoryCloze (hi)
|
623 |
+
type: Muennighoff/xstory_cloze
|
624 |
+
config: hi
|
625 |
+
split: validation
|
626 |
+
revision: 8bb76e594b68147f1a430e86829d07189622b90d
|
627 |
+
metrics:
|
628 |
+
- type: Accuracy
|
629 |
+
value: 90.73
|
630 |
+
- task:
|
631 |
+
type: Sentence completion
|
632 |
+
dataset:
|
633 |
+
name: XStoryCloze (id)
|
634 |
+
type: Muennighoff/xstory_cloze
|
635 |
+
config: id
|
636 |
+
split: validation
|
637 |
+
revision: 8bb76e594b68147f1a430e86829d07189622b90d
|
638 |
+
metrics:
|
639 |
+
- type: Accuracy
|
640 |
+
value: 93.05
|
641 |
+
- task:
|
642 |
+
type: Sentence completion
|
643 |
+
dataset:
|
644 |
+
name: XStoryCloze (my)
|
645 |
+
type: Muennighoff/xstory_cloze
|
646 |
+
config: my
|
647 |
+
split: validation
|
648 |
+
revision: 8bb76e594b68147f1a430e86829d07189622b90d
|
649 |
+
metrics:
|
650 |
+
- type: Accuracy
|
651 |
+
value: 86.7
|
652 |
+
- task:
|
653 |
+
type: Sentence completion
|
654 |
+
dataset:
|
655 |
+
name: XStoryCloze (ru)
|
656 |
+
type: Muennighoff/xstory_cloze
|
657 |
+
config: ru
|
658 |
+
split: validation
|
659 |
+
revision: 8bb76e594b68147f1a430e86829d07189622b90d
|
660 |
+
metrics:
|
661 |
+
- type: Accuracy
|
662 |
+
value: 91.66
|
663 |
+
- task:
|
664 |
+
type: Sentence completion
|
665 |
+
dataset:
|
666 |
+
name: XStoryCloze (sw)
|
667 |
+
type: Muennighoff/xstory_cloze
|
668 |
+
config: sw
|
669 |
+
split: validation
|
670 |
+
revision: 8bb76e594b68147f1a430e86829d07189622b90d
|
671 |
+
metrics:
|
672 |
+
- type: Accuracy
|
673 |
+
value: 89.61
|
674 |
+
- task:
|
675 |
+
type: Sentence completion
|
676 |
+
dataset:
|
677 |
+
name: XStoryCloze (te)
|
678 |
+
type: Muennighoff/xstory_cloze
|
679 |
+
config: te
|
680 |
+
split: validation
|
681 |
+
revision: 8bb76e594b68147f1a430e86829d07189622b90d
|
682 |
+
metrics:
|
683 |
+
- type: Accuracy
|
684 |
+
value: 90.4
|
685 |
+
- task:
|
686 |
+
type: Sentence completion
|
687 |
+
dataset:
|
688 |
+
name: XStoryCloze (zh)
|
689 |
+
type: Muennighoff/xstory_cloze
|
690 |
+
config: zh
|
691 |
+
split: validation
|
692 |
+
revision: 8bb76e594b68147f1a430e86829d07189622b90d
|
693 |
+
metrics:
|
694 |
+
- type: Accuracy
|
695 |
+
value: 93.05
|
696 |
+
---
|
697 |
+
|
698 |
+
# Markobes/mt0-xxl-mt-Q4_K_M-GGUF
|
699 |
+
This model was converted to GGUF format from [`bigscience/mt0-xxl-mt`](https://huggingface.co/bigscience/mt0-xxl-mt) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
|
700 |
+
Refer to the [original model card](https://huggingface.co/bigscience/mt0-xxl-mt) for more details on the model.
|
701 |
+
|
702 |
+
## Use with llama.cpp
|
703 |
+
Install llama.cpp through brew (works on Mac and Linux)
|
704 |
+
|
705 |
+
```bash
|
706 |
+
brew install llama.cpp
|
707 |
+
|
708 |
+
```
|
709 |
+
Invoke the llama.cpp server or the CLI.
|
710 |
+
|
711 |
+
### CLI:
|
712 |
+
```bash
|
713 |
+
llama-cli --hf-repo Markobes/mt0-xxl-mt-Q4_K_M-GGUF --hf-file mt0-xxl-mt-q4_k_m.gguf -p "The meaning to life and the universe is"
|
714 |
+
```
|
715 |
+
|
716 |
+
### Server:
|
717 |
+
```bash
|
718 |
+
llama-server --hf-repo Markobes/mt0-xxl-mt-Q4_K_M-GGUF --hf-file mt0-xxl-mt-q4_k_m.gguf -c 2048
|
719 |
+
```
|
720 |
+
|
721 |
+
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
|
722 |
+
|
723 |
+
Step 1: Clone llama.cpp from GitHub.
|
724 |
+
```
|
725 |
+
git clone https://github.com/ggerganov/llama.cpp
|
726 |
+
```
|
727 |
+
|
728 |
+
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
|
729 |
+
```
|
730 |
+
cd llama.cpp && LLAMA_CURL=1 make
|
731 |
+
```
|
732 |
+
|
733 |
+
Step 3: Run inference through the main binary.
|
734 |
+
```
|
735 |
+
./llama-cli --hf-repo Markobes/mt0-xxl-mt-Q4_K_M-GGUF --hf-file mt0-xxl-mt-q4_k_m.gguf -p "The meaning to life and the universe is"
|
736 |
+
```
|
737 |
+
or
|
738 |
+
```
|
739 |
+
./llama-server --hf-repo Markobes/mt0-xxl-mt-Q4_K_M-GGUF --hf-file mt0-xxl-mt-q4_k_m.gguf -c 2048
|
740 |
+
```
|