Mario16180 commited on
Commit
0856c68
·
1 Parent(s): 515cec0

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 197.06 +/- 82.73
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x0000025740111550>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x00000257401115E0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x0000025740111670>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x0000025740111700>", "_build": "<function ActorCriticPolicy._build at 0x0000025740111790>", "forward": "<function ActorCriticPolicy.forward at 0x0000025740111820>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x00000257401118B0>", "_predict": "<function ActorCriticPolicy._predict at 0x0000025740111940>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x00000257401119D0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x0000025740111A60>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x0000025740111AF0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x000002574010F480>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 524288, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1667997831224825500, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVkAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXmM6XFVzZXJzXG1hcmlvXGFuYWNvbmRhM1xlbnZzXEFJNzAxUHJvamVjdFxsaWJcc2l0ZS1wYWNrYWdlc1xzdGFibGVfYmFzZWxpbmVzM1xjb21tb25cdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UaAx1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgefZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJqXjjxcu266mJFaua9FrrNehh66Xal9OAAAgD8AAIA/oLSFvv2xAT8aEAc+8qaWvizmCb3OE509AAAAAAAAAADG/5k+xDQcPl88u72vy8a9h1dJvbt+UzwAAAAAAAAAAJrtVbzDCV+6vNdLuX9707SqPbc6Qu1qOAAAgD8AAIA/s0ErvuFWqbpq82g9uzfvuxwYRL4stzo8AACAPwAAgD9a88694eqHuokCiTrq4QA22Y7wOheNnLkAAIA/AACAP00spz0KrBO7ZltVOa6GgDxXGw88MmBfvQAAgD8AAIA/TankPVzrArq+LQk4/PiYMiu0xTpgyB23AACAPwAAgD/TTDo+JP52PAZZKDtXzms5Bo4FPv1uX7oAAIA/AACAP6acLb6Bhr89ZX17OpqEjb6swci5Xgy+vAAAAAAAAAAAM8ldvVwDPLqB9zQ7s+iSNzcsQTsHExS6AACAPwAAgD9mWJO9e6SJumYWP7fr4B2yMm4ZO63OXjYAAIA/AACAP9p+zD34zM08DRoavhn7K74ZQ6K8tw0IPQAAAAAAAAAAIwCKvnyMoj6mc0A+5juLvr0ExDxDfDi7AAAAAAAAAADa0M690KqSPh2u8rxm/SK+1pIKvT5EDb0AAAAAAAAAAM3ULb2PnjW6zdDfOhUWMTXmy5q69TkAugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.04857599999999995, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVcxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI2pJVEW4UYECUhpRSlIwBbJRN6AOMAXSUR0CFtwHryDqXdX2UKGgGaAloD0MIiCzSxLtlYUCUhpRSlGgVTegDaBZHQIW5umaYu011fZQoaAZoCWgPQwhl/tE36WZiQJSGlFKUaBVN6ANoFkdAhbu3u3MINXV9lChoBmgJaA9DCE0PCkpRw2NAlIaUUpRoFU3oA2gWR0CFv7f2saKldX2UKGgGaAloD0MILXsS2BzZcECUhpRSlGgVTYIBaBZHQIXENSZSeiB1fZQoaAZoCWgPQwiZS6q2m+Dcv5SGlFKUaBVL8GgWR0CF0Y4hEBsAdX2UKGgGaAloD0MI6jwq/m+/ZkCUhpRSlGgVTegDaBZHQIXXaAWi1zB1fZQoaAZoCWgPQwgmHeVgNshiQJSGlFKUaBVN6ANoFkdAhdhh73PAwnV9lChoBmgJaA9DCDWaXIwBXWNAlIaUUpRoFU3oA2gWR0CF6AFsYVIqdX2UKGgGaAloD0MIBg/TvjkQY0CUhpRSlGgVTegDaBZHQIXqLJEH+qB1fZQoaAZoCWgPQwjjM9k/TyNcQJSGlFKUaBVN6ANoFkdAhfF2e6I3znV9lChoBmgJaA9DCDnsvmN4t2JAlIaUUpRoFU3oA2gWR0CF88IAwPAgdX2UKGgGaAloD0MI5iK+EzOwYUCUhpRSlGgVTegDaBZHQIX3mCuloDh1fZQoaAZoCWgPQwjpLLMIxVtdQJSGlFKUaBVN6ANoFkdAhffReLNwBHV9lChoBmgJaA9DCEfLgR7q9mhAlIaUUpRoFU3oA2gWR0CF+Bcer+5wdX2UKGgGaAloD0MIdR4V/3e2XECUhpRSlGgVTegDaBZHQIb9Y5ksjFB1fZQoaAZoCWgPQwgclgZ+1L1iQJSGlFKUaBVN6ANoFkdAhwAHmRvFWHV9lChoBmgJaA9DCOsfRDLkHFxAlIaUUpRoFU3oA2gWR0CHCSTN+so2dX2UKGgGaAloD0MIdEAS9u3jY0CUhpRSlGgVTegDaBZHQIcN7ch1Tzd1fZQoaAZoCWgPQwgm5e5z/BVgQJSGlFKUaBVN6ANoFkdAhxIXT3IuG3V9lChoBmgJaA9DCLxASYEFuE1AlIaUUpRoFUvLaBZHQIcUPllsguB1fZQoaAZoCWgPQwjgaMcNv1tdQJSGlFKUaBVN6ANoFkdAhxb2fkFOf3V9lChoBmgJaA9DCJ8e2zLgNkpAlIaUUpRoFUvZaBZHQIcelERaouR1fZQoaAZoCWgPQwi5x9KHrutpQJSGlFKUaBVNpwNoFkdAhyKapHZsbnV9lChoBmgJaA9DCG1X6IPleGNAlIaUUpRoFU3oA2gWR0CHI95RCQcQdX2UKGgGaAloD0MIaam8HeE+QkCUhpRSlGgVS9hoFkdAhye1k+X7cnV9lChoBmgJaA9DCPRRRlyAYWVAlIaUUpRoFU3oA2gWR0CHKgFEiMYNdX2UKGgGaAloD0MIym/RyVJqX0CUhpRSlGgVTegDaBZHQIc4yTpxFRZ1fZQoaAZoCWgPQwj9h/Tb13tfQJSGlFKUaBVN6ANoFkdAhzsabONYKnV9lChoBmgJaA9DCJ30vvG1p/e/lIaUUpRoFUvaaBZHQIc+jOC5Etx1fZQoaAZoCWgPQwh2NuSfGZpeQJSGlFKUaBVN6ANoFkdAh0L0U47zTXV9lChoBmgJaA9DCDOjHw2npmFAlIaUUpRoFU3oA2gWR0CHRWco6S1WdX2UKGgGaAloD0MIUaIlj6dEYkCUhpRSlGgVTegDaBZHQIdJh+c6Nl11fZQoaAZoCWgPQwivk/qytNdeQJSGlFKUaBVN6ANoFkdAh0nJc5bQkXV9lChoBmgJaA9DCPJAZJEmSmNAlIaUUpRoFU3oA2gWR0CHSgsAeaKDdX2UKGgGaAloD0MILbKd76fmNcCUhpRSlGgVTRIBaBZHQIdWg0waisZ1fZQoaAZoCWgPQwiqDrkZbt5EQJSGlFKUaBVL1GgWR0CHXf9fCyhSdX2UKGgGaAloD0MIfLYODvbUY0CUhpRSlGgVTegDaBZHQIdiZqubI911fZQoaAZoCWgPQwgk7UYf8x5wQJSGlFKUaBVNsgFoFkdAh24c7hegMHV9lChoBmgJaA9DCHx9rUsNnGNAlIaUUpRoFU3oA2gWR0CHcp7UG3WndX2UKGgGaAloD0MIZW1TPK6nY0CUhpRSlGgVTegDaBZHQId4yYgJTl11fZQoaAZoCWgPQwjOVfMcEfViQJSGlFKUaBVN6ANoFkdAh3tnYpUgjnV9lChoBmgJaA9DCGQ/i6VIxGJAlIaUUpRoFU3oA2gWR0CHgx4cFQl9dX2UKGgGaAloD0MIh01k5gJvSUCUhpRSlGgVS9toFkdAh4NRUm2LHnV9lChoBmgJaA9DCKfoSC5/emFAlIaUUpRoFU3oA2gWR0CHhsaKk2xZdX2UKGgGaAloD0MIAHMtWgBAYkCUhpRSlGgVTegDaBZHQIeHzrs0HhV1fZQoaAZoCWgPQwj3AN2Xs3lrQJSGlFKUaBVNhAFoFkdAh4gzGxUvPHV9lChoBmgJaA9DCJmesMSDV2JAlIaUUpRoFU3oA2gWR0CHjLyWiUPhdX2UKGgGaAloD0MIvXDnwshRZUCUhpRSlGgVTegDaBZHQIeZG4LCvX91fZQoaAZoCWgPQwjFqdbCLJQ1QJSGlFKUaBVNFgFoFkdAh5u3UH6dlXV9lChoBmgJaA9DCDJyFvY07mJAlIaUUpRoFU3oA2gWR0CHnpStNi6QdX2UKGgGaAloD0MI6SrdXWfjG0CUhpRSlGgVS+loFkdAh6JZa/yoXXV9lChoBmgJaA9DCFrZPuQt111AlIaUUpRoFU3oA2gWR0CHpT4593KTdX2UKGgGaAloD0MIGcizy7cXXUCUhpRSlGgVTegDaBZHQIepNkpZwGZ1fZQoaAZoCWgPQwhXs874PgRlQJSGlFKUaBVN6ANoFkdAh6mrDIikf3V9lChoBmgJaA9DCHnL1Y9NgWFAlIaUUpRoFU3oA2gWR0CIpn31SOzZdX2UKGgGaAloD0MIx0yiXvBZPMCUhpRSlGgVTRcBaBZHQIina5RTCLx1fZQoaAZoCWgPQwhycOmY81ZiQJSGlFKUaBVN6ANoFkdAiK2fI0ZWJnV9lChoBmgJaA9DCH6K48CrrUZAlIaUUpRoFUvlaBZHQIiu9pwjt5V1fZQoaAZoCWgPQwgJNxlVBultQJSGlFKUaBVN0gJoFkdAiK8+TeO4onV9lChoBmgJaA9DCKsF9phINUNAlIaUUpRoFUvOaBZHQIi4v9BKL891fZQoaAZoCWgPQwjAkqtY/B1eQJSGlFKUaBVN6ANoFkdAiL+YQ8OkL3V9lChoBmgJaA9DCMjShy6ory9AlIaUUpRoFUv3aBZHQIjE8rGza9N1fZQoaAZoCWgPQwi9GwsKg0FlQJSGlFKUaBVN6ANoFkdAiMVKx1PnCHV9lChoBmgJaA9DCNOh0/NulVFAlIaUUpRoFUvWaBZHQIjLVV94NZx1fZQoaAZoCWgPQwhPH4E/fO5gQJSGlFKUaBVN6ANoFkdAiM39d3SrpHV9lChoBmgJaA9DCFZI+Uk1XWJAlIaUUpRoFU3oA2gWR0CI0RY4hllLdX2UKGgGaAloD0MIDXBBtizvXECUhpRSlGgVTegDaBZHQIjSA9eQdS51fZQoaAZoCWgPQwhiaHVyBnNjQJSGlFKUaBVN6ANoFkdAiNJmKqGUOnV9lChoBmgJaA9DCBtLWBtjrzJAlIaUUpRoFU0IAWgWR0CI1XKifxtpdX2UKGgGaAloD0MI0lW6u055Y0CUhpRSlGgVTegDaBZHQIjh17WuoxZ1fZQoaAZoCWgPQwhVih2NQ8NwQJSGlFKUaBVNgwFoFkdAiOQhkiD/VHV9lChoBmgJaA9DCHwNwXEZdWxAlIaUUpRoFU0uAWgWR0CI5cWBz3h5dX2UKGgGaAloD0MICqNZ2T5pZUCUhpRSlGgVTegDaBZHQIjmQGr0aqF1fZQoaAZoCWgPQwjYYyKlWT5nQJSGlFKUaBVN6ANoFkdAiOkNYSxqwnV9lChoBmgJaA9DCDlHHR1XT2NAlIaUUpRoFU3oA2gWR0CI6xGXokiVdX2UKGgGaAloD0MICw4viMjXZECUhpRSlGgVTegDaBZHQIjuadrftQd1fZQoaAZoCWgPQwjB/uvctC9OQJSGlFKUaBVL92gWR0CI9J1q33HrdX2UKGgGaAloD0MIPZ6WHzhmZkCUhpRSlGgVTegDaBZHQIj5R6yB06p1fZQoaAZoCWgPQwgBGTp2UPNiQJSGlFKUaBVN6ANoFkdAiP7PKdQO4HV9lChoBmgJaA9DCIwVNZiG329AlIaUUpRoFU3jA2gWR0CI/6InjQzDdX2UKGgGaAloD0MIk45yMJu0OUCUhpRSlGgVS/ZoFkdAiRRAJC0F83V9lChoBmgJaA9DCFfog2VsZGRAlIaUUpRoFU3oA2gWR0CJFfyoXKr8dX2UKGgGaAloD0MIhXmPM01UN0CUhpRSlGgVTQMBaBZHQIkWVsrNGEx1fZQoaAZoCWgPQwgmjjwQ2Z9vQJSGlFKUaBVNzwFoFkdAiRxZL7Gec3V9lChoBmgJaA9DCAWHF0QkG2VAlIaUUpRoFU3oA2gWR0CJHMvmHP/rdX2UKGgGaAloD0MItoKmJdZ3YkCUhpRSlGgVTegDaBZHQIkiYbp/wy91fZQoaAZoCWgPQwhQNuUK79BgQJSGlFKUaBVN6ANoFkdAiSNPWYnfEXV9lChoBmgJaA9DCIDz4sRX12FAlIaUUpRoFU3oA2gWR0CJI7GtITXbdX2UKGgGaAloD0MIrJFdaVlRckCUhpRSlGgVTfYCaBZHQIkkemzjWCp1fZQoaAZoCWgPQwjKjSJrDfxjQJSGlFKUaBVN6ANoFkdAiSZ8lolD4XV9lChoBmgJaA9DCH6pnzfVS3BAlIaUUpRoFU2MA2gWR0CJMqAeaKDTdX2UKGgGaAloD0MIZf7RN2kCY0CUhpRSlGgVTegDaBZHQIk1KXv6TGJ1fZQoaAZoCWgPQwhGCI82jgRlQJSGlFKUaBVN6ANoFkdAiTbmALApKHV9lChoBmgJaA9DCC0ly0kopGtAlIaUUpRoFU2xAWgWR0CJNymZ3LV4dX2UKGgGaAloD0MInIh+bX0fbkCUhpRSlGgVTWUBaBZHQIk4b06HTJB1fZQoaAZoCWgPQwi/uipQi8HFv5SGlFKUaBVNDAFoFkdAiTiWOhkAgnV9lChoBmgJaA9DCAzO4O+XB2FAlIaUUpRoFU3oA2gWR0CJPD39JjDsdX2UKGgGaAloD0MIjfFh9rJib0CUhpRSlGgVTU8BaBZHQIk8VIVdonN1fZQoaAZoCWgPQwiOBYVBGZhiQJSGlFKUaBVN6ANoFkdAiT9/uCwr2HVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 160, "n_steps": 2048, "gamma": 0.991, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVkAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXmM6XFVzZXJzXG1hcmlvXGFuYWNvbmRhM1xlbnZzXEFJNzAxUHJvamVjdFxsaWJcc2l0ZS1wYWNrYWdlc1xzdGFibGVfYmFzZWxpbmVzM1xjb21tb25cdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UaAx1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgefZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Windows-10-10.0.19044-SP0 10.0.19044", "Python": "3.8.13", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0", "GPU Enabled": "True", "Numpy": "1.21.5", "Gym": "0.21.0"}}
pepito3.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3bcb72dcb35a8dec5f3e2cb4f0de0cfd64d5a10b87c892c03348cdc3539d311a
3
+ size 147068
pepito3/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
pepito3/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x0000025740111550>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x00000257401115E0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x0000025740111670>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x0000025740111700>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x0000025740111790>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x0000025740111820>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x00000257401118B0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x0000025740111940>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x00000257401119D0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x0000025740111A60>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x0000025740111AF0>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x000002574010F480>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 524288,
46
+ "_total_timesteps": 500000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1667997831224825500,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVkAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXmM6XFVzZXJzXG1hcmlvXGFuYWNvbmRhM1xlbnZzXEFJNzAxUHJvamVjdFxsaWJcc2l0ZS1wYWNrYWdlc1xzdGFibGVfYmFzZWxpbmVzM1xjb21tb25cdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UaAx1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgefZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJqXjjxcu266mJFaua9FrrNehh66Xal9OAAAgD8AAIA/oLSFvv2xAT8aEAc+8qaWvizmCb3OE509AAAAAAAAAADG/5k+xDQcPl88u72vy8a9h1dJvbt+UzwAAAAAAAAAAJrtVbzDCV+6vNdLuX9707SqPbc6Qu1qOAAAgD8AAIA/s0ErvuFWqbpq82g9uzfvuxwYRL4stzo8AACAPwAAgD9a88694eqHuokCiTrq4QA22Y7wOheNnLkAAIA/AACAP00spz0KrBO7ZltVOa6GgDxXGw88MmBfvQAAgD8AAIA/TankPVzrArq+LQk4/PiYMiu0xTpgyB23AACAPwAAgD/TTDo+JP52PAZZKDtXzms5Bo4FPv1uX7oAAIA/AACAP6acLb6Bhr89ZX17OpqEjb6swci5Xgy+vAAAAAAAAAAAM8ldvVwDPLqB9zQ7s+iSNzcsQTsHExS6AACAPwAAgD9mWJO9e6SJumYWP7fr4B2yMm4ZO63OXjYAAIA/AACAP9p+zD34zM08DRoavhn7K74ZQ6K8tw0IPQAAAAAAAAAAIwCKvnyMoj6mc0A+5juLvr0ExDxDfDi7AAAAAAAAAADa0M690KqSPh2u8rxm/SK+1pIKvT5EDb0AAAAAAAAAAM3ULb2PnjW6zdDfOhUWMTXmy5q69TkAugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.04857599999999995,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVcxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI2pJVEW4UYECUhpRSlIwBbJRN6AOMAXSUR0CFtwHryDqXdX2UKGgGaAloD0MIiCzSxLtlYUCUhpRSlGgVTegDaBZHQIW5umaYu011fZQoaAZoCWgPQwhl/tE36WZiQJSGlFKUaBVN6ANoFkdAhbu3u3MINXV9lChoBmgJaA9DCE0PCkpRw2NAlIaUUpRoFU3oA2gWR0CFv7f2saKldX2UKGgGaAloD0MILXsS2BzZcECUhpRSlGgVTYIBaBZHQIXENSZSeiB1fZQoaAZoCWgPQwiZS6q2m+Dcv5SGlFKUaBVL8GgWR0CF0Y4hEBsAdX2UKGgGaAloD0MI6jwq/m+/ZkCUhpRSlGgVTegDaBZHQIXXaAWi1zB1fZQoaAZoCWgPQwgmHeVgNshiQJSGlFKUaBVN6ANoFkdAhdhh73PAwnV9lChoBmgJaA9DCDWaXIwBXWNAlIaUUpRoFU3oA2gWR0CF6AFsYVIqdX2UKGgGaAloD0MIBg/TvjkQY0CUhpRSlGgVTegDaBZHQIXqLJEH+qB1fZQoaAZoCWgPQwjjM9k/TyNcQJSGlFKUaBVN6ANoFkdAhfF2e6I3znV9lChoBmgJaA9DCDnsvmN4t2JAlIaUUpRoFU3oA2gWR0CF88IAwPAgdX2UKGgGaAloD0MI5iK+EzOwYUCUhpRSlGgVTegDaBZHQIX3mCuloDh1fZQoaAZoCWgPQwjpLLMIxVtdQJSGlFKUaBVN6ANoFkdAhffReLNwBHV9lChoBmgJaA9DCEfLgR7q9mhAlIaUUpRoFU3oA2gWR0CF+Bcer+5wdX2UKGgGaAloD0MIdR4V/3e2XECUhpRSlGgVTegDaBZHQIb9Y5ksjFB1fZQoaAZoCWgPQwgclgZ+1L1iQJSGlFKUaBVN6ANoFkdAhwAHmRvFWHV9lChoBmgJaA9DCOsfRDLkHFxAlIaUUpRoFU3oA2gWR0CHCSTN+so2dX2UKGgGaAloD0MIdEAS9u3jY0CUhpRSlGgVTegDaBZHQIcN7ch1Tzd1fZQoaAZoCWgPQwgm5e5z/BVgQJSGlFKUaBVN6ANoFkdAhxIXT3IuG3V9lChoBmgJaA9DCLxASYEFuE1AlIaUUpRoFUvLaBZHQIcUPllsguB1fZQoaAZoCWgPQwjgaMcNv1tdQJSGlFKUaBVN6ANoFkdAhxb2fkFOf3V9lChoBmgJaA9DCJ8e2zLgNkpAlIaUUpRoFUvZaBZHQIcelERaouR1fZQoaAZoCWgPQwi5x9KHrutpQJSGlFKUaBVNpwNoFkdAhyKapHZsbnV9lChoBmgJaA9DCG1X6IPleGNAlIaUUpRoFU3oA2gWR0CHI95RCQcQdX2UKGgGaAloD0MIaam8HeE+QkCUhpRSlGgVS9hoFkdAhye1k+X7cnV9lChoBmgJaA9DCPRRRlyAYWVAlIaUUpRoFU3oA2gWR0CHKgFEiMYNdX2UKGgGaAloD0MIym/RyVJqX0CUhpRSlGgVTegDaBZHQIc4yTpxFRZ1fZQoaAZoCWgPQwj9h/Tb13tfQJSGlFKUaBVN6ANoFkdAhzsabONYKnV9lChoBmgJaA9DCJ30vvG1p/e/lIaUUpRoFUvaaBZHQIc+jOC5Etx1fZQoaAZoCWgPQwh2NuSfGZpeQJSGlFKUaBVN6ANoFkdAh0L0U47zTXV9lChoBmgJaA9DCDOjHw2npmFAlIaUUpRoFU3oA2gWR0CHRWco6S1WdX2UKGgGaAloD0MIUaIlj6dEYkCUhpRSlGgVTegDaBZHQIdJh+c6Nl11fZQoaAZoCWgPQwivk/qytNdeQJSGlFKUaBVN6ANoFkdAh0nJc5bQkXV9lChoBmgJaA9DCPJAZJEmSmNAlIaUUpRoFU3oA2gWR0CHSgsAeaKDdX2UKGgGaAloD0MILbKd76fmNcCUhpRSlGgVTRIBaBZHQIdWg0waisZ1fZQoaAZoCWgPQwiqDrkZbt5EQJSGlFKUaBVL1GgWR0CHXf9fCyhSdX2UKGgGaAloD0MIfLYODvbUY0CUhpRSlGgVTegDaBZHQIdiZqubI911fZQoaAZoCWgPQwgk7UYf8x5wQJSGlFKUaBVNsgFoFkdAh24c7hegMHV9lChoBmgJaA9DCHx9rUsNnGNAlIaUUpRoFU3oA2gWR0CHcp7UG3WndX2UKGgGaAloD0MIZW1TPK6nY0CUhpRSlGgVTegDaBZHQId4yYgJTl11fZQoaAZoCWgPQwjOVfMcEfViQJSGlFKUaBVN6ANoFkdAh3tnYpUgjnV9lChoBmgJaA9DCGQ/i6VIxGJAlIaUUpRoFU3oA2gWR0CHgx4cFQl9dX2UKGgGaAloD0MIh01k5gJvSUCUhpRSlGgVS9toFkdAh4NRUm2LHnV9lChoBmgJaA9DCKfoSC5/emFAlIaUUpRoFU3oA2gWR0CHhsaKk2xZdX2UKGgGaAloD0MIAHMtWgBAYkCUhpRSlGgVTegDaBZHQIeHzrs0HhV1fZQoaAZoCWgPQwj3AN2Xs3lrQJSGlFKUaBVNhAFoFkdAh4gzGxUvPHV9lChoBmgJaA9DCJmesMSDV2JAlIaUUpRoFU3oA2gWR0CHjLyWiUPhdX2UKGgGaAloD0MIvXDnwshRZUCUhpRSlGgVTegDaBZHQIeZG4LCvX91fZQoaAZoCWgPQwjFqdbCLJQ1QJSGlFKUaBVNFgFoFkdAh5u3UH6dlXV9lChoBmgJaA9DCDJyFvY07mJAlIaUUpRoFU3oA2gWR0CHnpStNi6QdX2UKGgGaAloD0MI6SrdXWfjG0CUhpRSlGgVS+loFkdAh6JZa/yoXXV9lChoBmgJaA9DCFrZPuQt111AlIaUUpRoFU3oA2gWR0CHpT4593KTdX2UKGgGaAloD0MIGcizy7cXXUCUhpRSlGgVTegDaBZHQIepNkpZwGZ1fZQoaAZoCWgPQwhXs874PgRlQJSGlFKUaBVN6ANoFkdAh6mrDIikf3V9lChoBmgJaA9DCHnL1Y9NgWFAlIaUUpRoFU3oA2gWR0CIpn31SOzZdX2UKGgGaAloD0MIx0yiXvBZPMCUhpRSlGgVTRcBaBZHQIina5RTCLx1fZQoaAZoCWgPQwhycOmY81ZiQJSGlFKUaBVN6ANoFkdAiK2fI0ZWJnV9lChoBmgJaA9DCH6K48CrrUZAlIaUUpRoFUvlaBZHQIiu9pwjt5V1fZQoaAZoCWgPQwgJNxlVBultQJSGlFKUaBVN0gJoFkdAiK8+TeO4onV9lChoBmgJaA9DCKsF9phINUNAlIaUUpRoFUvOaBZHQIi4v9BKL891fZQoaAZoCWgPQwjAkqtY/B1eQJSGlFKUaBVN6ANoFkdAiL+YQ8OkL3V9lChoBmgJaA9DCMjShy6ory9AlIaUUpRoFUv3aBZHQIjE8rGza9N1fZQoaAZoCWgPQwi9GwsKg0FlQJSGlFKUaBVN6ANoFkdAiMVKx1PnCHV9lChoBmgJaA9DCNOh0/NulVFAlIaUUpRoFUvWaBZHQIjLVV94NZx1fZQoaAZoCWgPQwhPH4E/fO5gQJSGlFKUaBVN6ANoFkdAiM39d3SrpHV9lChoBmgJaA9DCFZI+Uk1XWJAlIaUUpRoFU3oA2gWR0CI0RY4hllLdX2UKGgGaAloD0MIDXBBtizvXECUhpRSlGgVTegDaBZHQIjSA9eQdS51fZQoaAZoCWgPQwhiaHVyBnNjQJSGlFKUaBVN6ANoFkdAiNJmKqGUOnV9lChoBmgJaA9DCBtLWBtjrzJAlIaUUpRoFU0IAWgWR0CI1XKifxtpdX2UKGgGaAloD0MI0lW6u055Y0CUhpRSlGgVTegDaBZHQIjh17WuoxZ1fZQoaAZoCWgPQwhVih2NQ8NwQJSGlFKUaBVNgwFoFkdAiOQhkiD/VHV9lChoBmgJaA9DCHwNwXEZdWxAlIaUUpRoFU0uAWgWR0CI5cWBz3h5dX2UKGgGaAloD0MICqNZ2T5pZUCUhpRSlGgVTegDaBZHQIjmQGr0aqF1fZQoaAZoCWgPQwjYYyKlWT5nQJSGlFKUaBVN6ANoFkdAiOkNYSxqwnV9lChoBmgJaA9DCDlHHR1XT2NAlIaUUpRoFU3oA2gWR0CI6xGXokiVdX2UKGgGaAloD0MICw4viMjXZECUhpRSlGgVTegDaBZHQIjuadrftQd1fZQoaAZoCWgPQwjB/uvctC9OQJSGlFKUaBVL92gWR0CI9J1q33HrdX2UKGgGaAloD0MIPZ6WHzhmZkCUhpRSlGgVTegDaBZHQIj5R6yB06p1fZQoaAZoCWgPQwgBGTp2UPNiQJSGlFKUaBVN6ANoFkdAiP7PKdQO4HV9lChoBmgJaA9DCIwVNZiG329AlIaUUpRoFU3jA2gWR0CI/6InjQzDdX2UKGgGaAloD0MIk45yMJu0OUCUhpRSlGgVS/ZoFkdAiRRAJC0F83V9lChoBmgJaA9DCFfog2VsZGRAlIaUUpRoFU3oA2gWR0CJFfyoXKr8dX2UKGgGaAloD0MIhXmPM01UN0CUhpRSlGgVTQMBaBZHQIkWVsrNGEx1fZQoaAZoCWgPQwgmjjwQ2Z9vQJSGlFKUaBVNzwFoFkdAiRxZL7Gec3V9lChoBmgJaA9DCAWHF0QkG2VAlIaUUpRoFU3oA2gWR0CJHMvmHP/rdX2UKGgGaAloD0MItoKmJdZ3YkCUhpRSlGgVTegDaBZHQIkiYbp/wy91fZQoaAZoCWgPQwhQNuUK79BgQJSGlFKUaBVN6ANoFkdAiSNPWYnfEXV9lChoBmgJaA9DCIDz4sRX12FAlIaUUpRoFU3oA2gWR0CJI7GtITXbdX2UKGgGaAloD0MIrJFdaVlRckCUhpRSlGgVTfYCaBZHQIkkemzjWCp1fZQoaAZoCWgPQwjKjSJrDfxjQJSGlFKUaBVN6ANoFkdAiSZ8lolD4XV9lChoBmgJaA9DCH6pnzfVS3BAlIaUUpRoFU2MA2gWR0CJMqAeaKDTdX2UKGgGaAloD0MIZf7RN2kCY0CUhpRSlGgVTegDaBZHQIk1KXv6TGJ1fZQoaAZoCWgPQwhGCI82jgRlQJSGlFKUaBVN6ANoFkdAiTbmALApKHV9lChoBmgJaA9DCC0ly0kopGtAlIaUUpRoFU2xAWgWR0CJNymZ3LV4dX2UKGgGaAloD0MInIh+bX0fbkCUhpRSlGgVTWUBaBZHQIk4b06HTJB1fZQoaAZoCWgPQwi/uipQi8HFv5SGlFKUaBVNDAFoFkdAiTiWOhkAgnV9lChoBmgJaA9DCAzO4O+XB2FAlIaUUpRoFU3oA2gWR0CJPD39JjDsdX2UKGgGaAloD0MIjfFh9rJib0CUhpRSlGgVTU8BaBZHQIk8VIVdonN1fZQoaAZoCWgPQwiOBYVBGZhiQJSGlFKUaBVN6ANoFkdAiT9/uCwr2HVlLg=="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 160,
79
+ "n_steps": 2048,
80
+ "gamma": 0.991,
81
+ "gae_lambda": 0.95,
82
+ "ent_coef": 0.0,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 10,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVkAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXmM6XFVzZXJzXG1hcmlvXGFuYWNvbmRhM1xlbnZzXEFJNzAxUHJvamVjdFxsaWJcc2l0ZS1wYWNrYWdlc1xzdGFibGVfYmFzZWxpbmVzM1xjb21tb25cdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UaAx1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgefZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
pepito3/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cb18c77a5c26c0a0c47162f3729d96b714856133b941ba890ab80d00c2f2714c
3
+ size 87929
pepito3/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:78a85a6cddb2f33cb55bf5a67506cc08bc69a73969b703c33aa3c8f189bed9ac
3
+ size 43201
pepito3/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
pepito3/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Windows-10-10.0.19044-SP0 10.0.19044
2
+ Python: 3.8.13
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.0
5
+ GPU Enabled: True
6
+ Numpy: 1.21.5
7
+ Gym: 0.21.0
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 197.05640950219782, "std_reward": 82.72845803524957, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-11-09T16:58:23.635471"}